Нейросетевая модель управления робототехническим комплексом при проведении аварийно-спасательных работ в условиях Крайнего Севера
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Neural network model of robotic complex control during emergency rescue operations under the conditions of the Far North

Tsarkova E.G.,  idKalach A.V., Bobrov V.N. 

UDC 517.977.58
DOI: 10.26102/2310-6018/2023.40.1.010

  • Abstract
  • List of references
  • About authors

The geopolitical situation and the increase in criminal and terrorist threats dictate the need to develop new territories, including the North of Russia. The article presents the results of a study of an artificial neural network mathematical model that takes into account delays designed to control an autopiloted ground-based robotic complex employed for transportation during emergency rescue operations under difficult natural and climatic conditions of the Arctic region. The universal nature of the proposed method is shown. An approach to finding a solution to the optimization problem using the necessary optimality conditions in the form of the Pontryagin maximum principle and the method of rapid automatic differentiation is described. A problem-oriented software product has been created, which is based on the developed computational algorithm for constructing approximate optimal control. The results obtained from numerical experiments confirm the effectiveness of the developed algorithm in finding an approximate optimal solution to the problem under consideration. The created software tool can be used to train an ANN with dynamics described by a system of differential equations with consideration to delays. The proposed mathematical model of ANN is suitable to solving a wide range of applied robotics tasks, including those aimed at developing technical means for emergency rescue operations under difficult natural and climatic conditions of the Arctic region. The flexibility, stability and adaptability of the selected model to changes in input parameters determine the prospects of using the developed computational algorithm to solve control problems in complex technical systems.

Keywords: robotics, emergency rescue operations, optimal control problem, maximum principle, artificial neural network training, safety

For citation: Tsarkova E.G., Kalach A.V., Bobrov V.N. Neural network model of robotic complex control during emergency rescue operations under the conditions of the Far North. Modeling, Optimization and Information Technology. 2023;11(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1291 DOI: 10.26102/2310-6018/2023.40.1.010 (In Russ).

465

Full text in PDF

Received 12.12.2022

Revised 27.01.2023

Accepted 10.02.2023

Published 31.03.2023