Keywords: printed circuit board, non-destructive testing, ultrasound diagnostics, delamination, hidden defects, ultrasonic wave, piezoelectric transducer, artificial neural network, training, identification
The use of an artificial neural network in the problem of ultrasonic diagnostics of defects in printed circuit boards of electronic devices
UDC 621.396.69
DOI: 10.26102/2310-6018/2023.41.2.020
Modern electronic devices are complex technical systems, the functioning of which is accompanied by various physical processes occurring in their nodes and blocks. The combination of circuitry, structural and technological complexity of radio-electronic devices is the cause of various defects in them including hidden ones with a long latency period. This, in turn, imposes higher requirements for the diagnosis and control of the technical condition of electronic devices. The relevance of the research presented in this article is due to the need to increase the reliability and accuracy of defect identification in nodes and blocks of electronic devices, the development of new methods and means of technical diagnostics combining traditional approaches with actively developing technologies of artificial neural networks, big data processing, computational experiment. The article presents a study on ultrasound diagnostics of internal defects in the delamination of printed circuit boards. The method of modeling various defects using specialized software ABAQUS is described. The features of the subsequent processing of experimental data – amplitude-time, amplitude-frequency characteristics, the formation of numerical arrays of the parameters under study – are defined. The structure of an artificial neural network for diagnosing and identifying defects of printed circuit boards is given and the technology of its training and testing is defined. The materials of the article are of practical value for design engineers, circuit and system engineers of electronic systems as well as developers of complex technical complexes.
1. Uvaysov S.U. Chernoverskaya V.V. Dang N.V. Tuan N.V. The use of an artificial neural network in thermal diagnostics of the printed node of the on-board take-off control device of an aircraft. Modeling, Optimization and Information Technology. 2022;10(3). Available from: https://moitvivt.ru/ru/journal/pdf?id=1218. DOI: 10.26102/2310-6018/2022.38.3.012 (In Russ.).
2. Nushtaev D.V., Tropkin S.N. Abaqus: posobie dlya nachinayushchikh. M.: OOO «TESIS»; 2010. 43 p. (In Russ.).
3. Zolochevskii A.A., Bekker A.A. Vvedenie v ABAQUS. Metodicheskoe posobie. Kharkov: TOV “Bіznes Іnvestor Grup”; 2011. 49 p. (In Russ.).
4. Manilyk T., Il'in K. Prakticheskoe primenenie programmnogo kompleksa ABAQUS v inzhenernykh zadachakh. Versiya 6.5. M.: MFTI, OOO «TESIS»; 2006. 67 p. (In Russ.).
5. Dmitriev K.V., Karabutov A.A., Korobov A.I. Lineinye ul'trazvukovye volny v zhidkikh i tverdykh sredakh: uchebnoe posobie dlya fizicheskogo praktikuma po akustike. M.: Fizicheskii fak. MGU; 2017. 114 p. (In Russ.).
6. Kazantsev V.F., Mitskevich A.M., Agranat B.A. Fizika i tekhnika moshchnogo ul'trazvuka. M.: Nauka; 1970. 689 p. (In Russ.).
7. Fam Le Kuok Khan'. Diagnostika radioelektronnykh ustroistv pri ispytaniyakh na udarnye vozdeistviya: diss. … kand. tekhn. nauk: 05.12.04. M.: RTU MIREA; 2021. 157 p. (In Russ.).
8. Fedorov D.Yu. Programmirovanie na yazyke vysokogo urovnya Python: uchebnoe posobie dlya vuzov. M.: Yurait; 2021. Available from: https://urait.ru/bcode/478098 (accessed on 16.10.2022). (In Russ.).
9. Tonni Geddis. Nachinaem programmirovat' na Python. 5-e izdanie. S-Pb.: BKhV; 2022. 880 p. (In Russ.).
10. Rostovtsev V.S. Iskusstvennye neironnye seti: uchebnik. Kirov: Izd-vo VyatGU; 2014. 208 p. (In Russ.).
11. Burakov M.V. Neironnye seti i neirokontrollery: uchebnoe posobie. S-Pb.: GUAP; 2013. 282 p. (In Russ.).
Keywords: printed circuit board, non-destructive testing, ultrasound diagnostics, delamination, hidden defects, ultrasonic wave, piezoelectric transducer, artificial neural network, training, identification
For citation: Uvaysov S.U., Chernoverskaya V.V., Nguyen H.D., Lu N.T. The use of an artificial neural network in the problem of ultrasonic diagnostics of defects in printed circuit boards of electronic devices. Modeling, Optimization and Information Technology. 2023;11(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1338 DOI: 10.26102/2310-6018/2023.41.2.020 (In Russ).
Received 30.03.2023
Revised 02.05.2023
Accepted 06.06.2023
Published 30.06.2023