Математическое моделирование сложных технологических систем методом конечных элементов
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Mathematical modeling of composite technological systems by the finite element method

Yaurov S.V.,  idDanilov A.D., idGusev K.Y., Gusev I.N. 

UDC 51-74
DOI: 10.26102/2310-6018/2023.42.3.024

  • Abstract
  • List of references
  • About authors

The finite element method has been known for a long time, but its active application for modeling physical processes began shortly after the development of modern computer machines. One of the advantages of such modeling is the reduction of time and financial costs compared to conventional experiments. The paper presents the results of hydraulic calculation of the design mode of a complex technological system operation by the finite element method. The calculation was performed using the thermal hydraulic CFX module of Ansys software package. At the same time, as part of the computational domain, a porous body model was employed as an alternative to direct modeling of system devices with a complex design. The object of the simulation was the cooling tower recharge system of power unit No. 1, 2 of Novovoronezh NPP-2. The test (verification) calculation showed an acceptable discrepancy with the real parameters of the system (within 15 %). According to the results of the computational analysis, the optimal number and combination of constantly operating pumps in the system were identified which achieved an increase in the consumption of the main cooling water by 30-40 % which, in turn, will reduce the accumulation of calcium carbonate on the main structural elements of cooling towers. The porous body model can be used both to predict the operating modes of equipment with complex design individually and as part of technological systems.

1. Buryaka V.A., Fokin V.G., Soldusova E.A., Glazunova N.A., Adeyanov I.E. Engineering analysis in Ansys Workbench. Samara, Publishing House of Samara State Technical University; 2010. 271 p. (In Russ.).

2. Ilyin V.P. Methods of finite differences and finite volumes for elliptic equations. Novosibirsk, Publishing House of the Institute of Mathematics; 2000. 345 p. (In Russ.).

3. Belova O.V., Volkov V.Yu., Skibin A.P., Nikolaeva A.V., Krutikov A.A., Chernyshev A.V. Methodological foundations of CFD calculations to support the design of pneumohydraulic systems. Inzhenernyi zhurnal: nauka i innovatsii = Engineering Journal: Science and Innovation. 2013;17(5):45. (In Russ.).

4. Snegirev A.Yu. High-performance computing in technical physics. Numerical simulation of turbulent flows: a textbook. Saint Petersburg, Publishing House of the Polytechnic University; 2009. 143 p. (In Russ.).

5. Novovoronezh NPP. NPP project-2006. URL: http://www.rosenergoatom.ru/upload/iblock/f01/f01b5ca309dbda1917c112d6897c0959.pdf (accessed 01.05.2023). (In Russ.).

6. Abramov N.N. Water supply: Textbook for universities. 3rd ed., reprint. and additional. Moscow, Stroyizdat; 1982; 440 p. (In Russ.).

7. Burov V. D. , Dorokhov E. V., Elizarov D. P., etc. Thermal power stations. Textbook for universities. 2nd ed., reprint. and additional. Moscow, Publishing house of MEI; 2007. 466 p. (In Russ.).

8. Kopylov A.S., Lavygin V.M., Ochkov V.F. Water treatment in power engineering. Textbook. 2nd ed. Moscow, MEI; 2006. 309 p. (In Russ.).

9. Bunkin V.I. Cooling water treatment at thermal power plants. Moscow, Energiya; 1964. 161 p. (In Russ.).

10. Bodnar Yu.F. Optimization of the water-chemical regime of circulating cooling systems with cooling towers. Energy saving and water treatment. 2008;53(3):8–11. (In Russ.).

11. Belokonova A.F. Water-chemical regimes of thermal power plants. Moscow, Energoatomizdat; 1985. 246 p. (In Russ.).

12. RD 34.22.501-87 Guidelines for preventing the formation of mineral and organic deposits in turbine condensers and their cleaning. (In Russ.).

13. RD 210.006-90 "Rules of technological design of nuclear power plants (with VVER reactors)". Moscow, Ministry of Atomic Energy and Industry of the USSR; 1990. 221 p. (In Russ.).

14. Povarov V.P., Statsura D.B., Usachev D.E. Operational experience and ways to improve the efficiency of the technical water supply system of power units No. 1,2 of Novovoronezh NPP-2. Izevstia vuzov. Yadernaya energetika = News of universities. Nuclear power engineering. 2020;2:5–16. DOI: 10.26583/npe.2020.2.01. (In Russ.).

15. Kirillov P.L., Bobkov V.P., Zhukov A.V., Yuryev Y.S. Handbook of thermohydraulic calculations in nuclear power engineering. Moscow, IzdAt; 2010. 776 p. (In Russ.).

Yaurov Sergey Vasilievich

Email: yaurovsv@gmail.com

Scopus | eLibrary |

Voronezh State Technical University

Voronezh, the Russian Federation

Danilov Aleksandr Dmitrievich
Doctor of Technical Sciences, Professor
Email: danilov-ad@yandex.ru

Scopus | ORCID | eLibrary |

Voronezh State Technical University

Voronezh, the Russian Federation

Gusev Konstantin Yurievich
Candidate of Technical Sciences, Associate Professor
Email: gussev_konstantin@mail.ru

Scopus | ORCID | eLibrary |

Voronezh State Technical University

Voronezh, the Russian Federation

Gusev Igor Nikolaevich

Email: GusevIN@nvnpp1.rosenergoatom.ru

Scopus | eLibrary |

the Branch of the Rosenergoatom, JSC Novovoronezh Nuclear Power Plant

Novovoronezh, the Russian Federation

Keywords: complex technological systems, purging, operation, main cooling water, cooling tower, water chemistry specifications, porous body model, finite volume method

For citation: Yaurov S.V., Danilov A.D., Gusev K.Y., Gusev I.N. Mathematical modeling of composite technological systems by the finite element method. Modeling, Optimization and Information Technology. 2023;11(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1371 DOI: 10.26102/2310-6018/2023.42.3.024 (In Russ).

198

Full text in PDF

Received 05.05.2023

Revised 20.06.2023

Accepted 21.09.2023

Published 30.09.2023