Анализ производительности подводной системы отражения видимого света
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Performance analysis of underwater visible light reflecting system

idAli M., idAli J.D.

UDC 2.2.15
DOI: 10.26102/2310-6018/2023.43.4.005

  • Abstract
  • List of references
  • About authors

Underwater visible light communication (UVLC) has become a promising wireless signaling approach towards the 5G and 5G beyond (5GB) wireless networks. The depth-dependent photophysical characteristics of water such as pressure, density, temperature, and salinity fluctuations lead to the changes in the refraction index and turbulence of water. The channel turbulence is a bottleneck for optical signaling in aqueous mediums, especially in oceans; it also causes malfunctions in transceivers because of signal bias or pointing error. The paper examines the performance of the reflecting node as part of underwater optical communication system operating in visible light. Based on the experimental data obtained in the Southern Indian Ocean, the outage outcomes and bit-error-rate (BER) performances are considered. The performance metrics for the proposed system model are obtained under weak-turbulence channel conditions within Pulse-Amplitude Modulation (PAM) scheme. Additionally, the authors analytically present the closed-form expression for outage probability and a tight asymptotic expression for BER performance at high signal-to-noise (SNR) ratio that offers helpful insights into the influence of the medium on channel parameters and the system as a whole. The simulation results demonstrate operational capacity of the underwater communication system model.

1. Elamassie M., Miramirkhani F., Uysal M. Channel modeling and performance characterization of underwater visible light communications. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA. 2018. p. 1–5. DOI: 10.1109/ICCW.2018.8403731.

2. Zedini E., Oubei H.M., Kammoun A., Hamdi M., Ooi B.S., Alouini M.-S. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems. IEEE Transactions on Communications. 2019;67(4):2893–2907. DOI: 10.1109/TCOMM.2019.2891542.

3. Chen J., Yu Z., Wang T., Liu Z., Gao S. High-speed modulating retro-reflectors with optical phase conjugation compensation. Optics Communications. 2022;507:127629. DOI: 10.1016/j.optcom.2021.127629.

4. Ziph-Schatzberg L., Bifano T., Cornelissen S., Stewart J., Bleier Z. Deformable mems mirror in secure optical communication system. In: Proc. SPIE 7318, Micro- and Nanotechnology Sensors, Systems, and Applications, 73180T, 11 May 2009, Orlando, Florida, United States. 2009. p. 190–201. DOI: 10.1117/12.818831.

5. Dabiri M.T., Rezaee M., Mohammadi L., Javaherian F., Yazdanian V., Hasna O., Uysal M. Modulating retroreflector based free space optical link for UAV-to-ground communications. IEEE Transactions on Wireless Communications. 2022;21(10):8631–8645. DOI: 10.1109/TWC.2022.3167945.

6. Li C., Liu H., Lin W., Yan B., Li S., Liu B. Performance analysis of modulating retro-reflector free space optical communication system over gamma-gamma fading channels. Microwave and Optical Technology Letters. 2022;64(3):609–615. DOI: 10.1002/mop.33140.

7. Zhang Z., Yin X., Cui X., Chang H., Xin X. Performance analysis of modulating retro-reflector link based on orbital angular momentum coding in underwater channels. Optics Communications. 2022;127903. DOI: 10.1016/j.optcom.2022.127903.

8. Jamali M.V., Khorramshahi P., Tashakori A., Chizari A., Shahsavari S., AbdollahRamezani S., Fazelian M., Bahrani S., Salehi J.A. Statistical distribution of intensity fluctuations for underwater wireless optical channels in the presence of air bubbles. In: 2016 Iran Workshop on Communication and Information Theory (IWCIT). IEEE, Tehran, Iran. 2016. p. 1–6. DOI: 10.1109/IWCIT.2016.7491626.

9. Elamassie M., Al-Nahhal M., Kizilirmak R.C., Uysal M. Transmit laser selection for underwater visible light communication systems. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Istanbul, Turkey. 2019. p. 1–6. DOI: 10.1109/PIMRC.2019.8904100.

10. Kaushal H., Kaddoum G. Underwater optical wireless communication. IEEE access. 2016;4:1518–1547. DOI: 10.1109/ACCESS.2016.2552538.

11. Elamassie M., Uysal M. Vertical underwater VLC links over cascaded gamma-gamma turbulence channels with pointing errors. In: IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Sochi, Russia. 2019. p. 1–5. DOI: 10.1109/BlackSeaCom.2019.8812811.

12. Bhowal A., Kshetrimayum R.S. Performance analysis of one-and two-way relays for underwater optical wireless communications. OSA Continuum. 2018;1(4):1400–1413. DOI: 10.1364/OSAC.1.001400.

13. Ali M.F., Jayakody D.N.K., Garg S., Kaddoum G., Hossain M.S. Dual-hop mixed FSO-VLC underwater wireless communication link. IEEE Transactions on Network and Service Management. 2022;19(3):3105–3120. DOI: 10.1109/TNSM.2022.3181169.

14. Elamassie M., Uysal M., Baykal Y., Abdallah M., Qaraqe K. Effect of eddy diffusivity ratio on underwater optical scintillation index. Journal of the Optical Society of America A. 2017;34(11):1969–1973. DOI: 10.1364/JOSAA.34.001969.

15. Yang F., Cheng J., Tsiftsis T.A. Free-space optical communication with nonzero boresight pointing errors. IEEE Transactions on Communications. 2014;62(2);713–725. DOI: 10.1109/TCOMM.2014.010914.130249.

16. Ramavath P.N., Udupi S.A., Krishnan P. Co-operative RF-UWOC link performance over hyperbolic tangent log-normal distribution channel with pointing errors. Optics Communications. 2020;469:125774. DOI: 10.1016/j.optcom.2020.125774.

17. Adamchik V., Marichev O. The algorithm for calculating integrals of hypergeometric type functions and its realization in reduce system. In: Proceedings of the international symposium on Symbolic and algebraic computation. ACM. 1990. p. 212–224.

18. Chiani M., Dardari D., Simon M.K. New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Transactions on Wireless Communications. 2003;2(4):840–845. DOI: 10.1109/TWC.2003.814350.

19. Belkic D. The Euler T and Lambert W functions in mechanistic radio-biological models with chemical kinetics for the repair of irradiated cells. Journal of Mathematical Chemistry. 2018;56(8):2133–2193. DOI: 10.1007/s10910-018-0932-3.

20. Argo floats, “Southern Indian Ocean”. URL: https://argo.ucsd.edu/. [accessed on 15.12.2021].

21. Nikishov V.V., Nikishov V.I. Spectrum of turbulent fluctuations of the sea-water refraction index. International Journal of Fluid Mechanics Research. 2000;27(1)82–98. DOI: 10.1615/InterJFluidMechRes.v27.i1.70.

22. Farid A.A., Hranilovic S. Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology. 2007;25(7):1702–1710. DOI: 10.1109/JLT.2007.899174.

Ali Mohammad Furqan

Email: ali89@tpu.ru

WoS | Scopus | ORCID |

Tomsk Polytechnic University

Tomsk, the Russian Federation

Ali Jayakody Dushantha Nalin K.
Ph.D., Профессор
Email: nalin@tpu.ru

WoS | ORCID |

Tomsk Polytechnic University

Tomsk, Russian Federation

Keywords: underwater wireless communication (UWC), underwater visible light communication (UVLC), underwater reflecting communication, underwater weak-turbulence, diver to diver communication (D2D), reflective semiconductor optical amplifier (RSOA)

For citation: Ali M., Ali J.D. Performance analysis of underwater visible light reflecting system. Modeling, Optimization and Information Technology. 2023;11(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1402 DOI: 10.26102/2310-6018/2023.43.4.005 .

353

Full text in PDF

Received 26.06.2023

Revised 23.08.2023

Accepted 12.10.2023

Published 31.12.2023