Модельное изучение процесса рассеяния электромагнитных волн на электродинамических структурах с нанесением диэлектрических материалов
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Model study of electromagnetic wave scattering on electrodynamic structures with the application of dielectric materials

idAvetisyan T.V., idLvovich Y.E., idPreobrazhenskiy A.P., Preobrazhenskiy Y.P. 

UDC 537.87
DOI: 10.26102/2310-6018/2023.43.4.020

  • Abstract
  • List of references
  • About authors

Radar signal scatterers (space, air, ground and water-based radar targets) and electromagnetic wave energy converters (spatial light modulators, means of reducing visibility in the radio wave range, antenna devices in the ultra-high frequency wave range) have complex geometry and large electrical dimensions and also contain absorbing and nonlinear elements. The analysis and synthesis of this electrodynamic technique based on rough knowledge of the physical processes occurring in these objects can cause significant and difficult-to-control errors in the assessment of their main characteristics, which change rapidly with changes in frequency, type of polarization and angle of incidence of electromagnetic waves. This paper examines a methodological approach aimed at evaluating and optimizing the scattering characteristics of electromagnetic waves that occur when electromagnetic fields interact with electrodynamic structures containing dielectric inclusions. To calculate these characteristics, the method of integral equations is used, and a genetic algorithm is employed to optimize them. The results of the study demonstrate the efficiency of the proposed approaches. The methodological approach considered in the paper can be used to improve the electromagnetic compatibility of devices, reduce their radar visibility.

1. Panarin D.G. Modeling of electromagnetic wave scattering on electrodynamic objects using a modified method of moments. Modelirovanie, optimizaciya i informacionnye tekhnologii = Modeling, optimization and information technology. 2016;14(3). URL: https://moit.vivt.ru/wp-content/uploads/2016/10/Panarin_3_16_1.pdf. (In Russ.).

2. Gladkov L.A., Kureychik V.V., Kureychik V.M. [et all]. Bioinspired methods in optimization. Moscow, Fizmatlit; 2009. 384 p. (In Russ.).

3. Ling H. RCS of waveguide cavities: a hybrid boundary-integral/modal approach. IEEE Transactions on Antennas and Propagation. 1990;38(9):1413–1420.

4. Maksimova A.A., Yurochkin A.G. Methods for studying the characteristics of electromagnetic wave scattering by objects. Vestnik Voronezhskogo instituta vysokih tekhnologij = Bulletin of the Voronezh Institute of High Technologies. 2016;10(1):53–56. (In Russ.).

5. Glotova T.V., Melnikova T.V. Solving the problem of scattering electromagnetic waves on a magneto-dielectric object based on the adaptive method. Modelirovanie, optimizaciya i informacionnye tekhnologii = Modeling, Optimization and Information Technology. 2016;13(2). URL: https://moit.vivt.ru/wp-content/uploads/2016/06/GlotovaMelnikova_2_16_2.pdf. (In Russ.).

6. Antipov S.A., Volodko A.V., Ishchenko E.A. [et all]. Investigation of the effect of the dielectric permittivity of a material on the effective scattering area. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Voronezh State Technical University. 2020;16(5):98–101. (In Russ.).

7. Pecherkin V.Ya., Vasilyak L.M., Vetchinin S.P. [et all]. Resonant scattering of plane electromagnetic waves by a dielectric ellipse. Prikladnaya fizika = Applied physics. 2019;4:5–10. (In Russ.).

8. Dudrin D.A. Model of electromagnetic wave scattering on a statistically uneven surface. T-Comm: Telekommunikacii i transport = T-Comm: Telecommunications and Transport. 2015;9(9):48–53. (In Russ.).

9. Sergeev A.V., Besher H.I. Scattering properties of a reflector with a magneto-dielectric material. Vestnik Voronezhskogo instituta vysokih tekhnologij = Bulletin of the Voronezh Institute of High Technologies. 2016;10(4):18–21. (In Russ.).

10. Maksimova A.A. Modeling of electromagnetic wave scattering on inhomogeneous magneto-dielectric bodies. Modelirovanie, optimizaciya i informacionnye tekhnologii = Modeling, Optimization and Information Technology. 2015;11(4). URL: https://moit.vivt.ru/wp-content/uploads/2015/12/Maksimova_4_15_1.pdf. (In Russ.).

11. Klimenko Y.A., Melnikova T.V., Preobrazhensky A.P. Investigation of the features of electromagnetic wave propagation. Vestnik Voronezhskogo instituta vysokih tekhnologij = Bulletin of the Voronezh Institute of High Technologies. 2021;38(3):22–25. (In Russ.).

Avetisyan Tatiana Vladimirovna

ORCID | eLibrary |

College ща Voronezh Institute of High Technologies

Voronezh, the Russian Federation

Lvovich Yakov Evseevich
Doctor of Technical Sciences, Professor

ORCID |

Voronezh Institute of High Technologies

Voronezh, the Russian Federation

Preobrazhenskiy Andrey Petrovich
Doctor of Technical Sciences, Professor

ORCID | eLibrary |

Voronezh Institute of High Technologies

Voronezh, the Russian Federation

Preobrazhenskiy Yuri Petrovich
Candidate of Technical Sciences, Associate Professor

eLibrary |

Voronezh Institute of High Technologies

Voronezh, the Russian Federation

Keywords: modeling, optimization, electromagnetic wave scattering, integral equation, genetic algorithm, radio communication

For citation: Avetisyan T.V., Lvovich Y.E., Preobrazhenskiy A.P., Preobrazhenskiy Y.P. Model study of electromagnetic wave scattering on electrodynamic structures with the application of dielectric materials. Modeling, Optimization and Information Technology. 2023;11(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1408 DOI: 10.26102/2310-6018/2023.43.4.020 (In Russ).

187

Full text in PDF

Received 22.06.2023

Revised 06.10.2023

Accepted 06.12.2023

Published 31.12.2023