Снижение избыточности данных лазерного сканирования для построения цифровых моделей рельефа
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Reducing redundancy of laser scanning data for building digital terrain models

idZaytseva E.V., idKochneva A.A., idKatuntsov E.V.

UDC 004.942
DOI: 10.26102/2310-6018/2023.43.4.033

  • Abstract
  • List of references
  • About authors

The main subtle aspects of airborne laser scanning (ALS) involve a large level of density of laser reflection points (LRP) within a certain unit area. This results in the need to process a large amount of information while building digital terrain models (DTMs). Such processing is computationally intensive. For this reason, the main task which is solved during DTM building is to create an accurate description of terrain features required for geodetic works. At the same time, it is necessary to observe the minimum number of LRPs related to the characteristic landforms in the considered location to minimize the use of computing power. Currently available algorithms of information distribution for DTMs built on standard coordinate grids do not allow to successfully resolve data arrays while preserving the proper detalisation level of certain locations. New software, which is used in geodesy and makes it possible to create sparse data arrays during DTM building, is based on a closed code. The paper proposes an algorithm for finding unknown intermediate data obtained with laser scanning of terrain relief, which allows effective thinning of laser reflection points that are insignificant when describing the terrain relief. An automatic technique of DTM building is developed. An algorithm for searching unknown intermediate LRP arrays is formed. Displot is available for sloped areas as well. At the same time detailisation in the quality of structure lines and special points is preserved.

1. Antipov A.V. Influence of airborne laser scanning point density on accuracy of digital terrain relief model creation. In: VI International scientific congress «GEO-Siberia-2010»: proceedings in 6 vol., 19–29 April 2010, Novosibirsk, Russia. Novosibirsk: SSGA; 2010. 2010;4(1):22–27. (In Russ.).

2. Antipov A.V. Calibration of airborne laser scanning data in the TerraSolid software product. In: VII International scientific congress «GEO-Siberia-2011»: proceedings in 6 vol., 19–29 April 2011, Novosibirsk, Russia. Novosibirsk: SSGA; 2011. 2011;4 (1):12–15. (In Russ.).

3. Essin A.S., Khamitov E.T. Application of airborne laser scanning for creation of topographic plans of scale 1 : 500 for the territory of Omsk. Avtomatizirovannye tekhnologii izyskanii i proektirovaniya = Automated technologies of surveys and design. 2011;40(1):8–11. (In Russ.).

4. Mishchenko Y.A., Mishchenko S.A. Technology of optimization of digital elevation model obtained from airborne laser scanning data. Informatsiya i kosmos = Information and space. 2007;(1):32–36. (In Russ.).

5. Osennyaya A.V., Korchagina E.V. Technology of optimization of digital terrain model obtained from airborne laser scanning data. Otraslevye nauchnye i prikladnye issledovaniya: Informatsionnye tekhnologii = Branch Scientific and Applied Research: Information Technologies. 2013;(4):85–86. (In Russ.).

6. Briese C., Pfennigbauer M., Lehnera H., Ullrich A., Wagner W., Pfeifer N. Radioametric calibration of multi-wavelenght airbone laser scanning data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2012;I-7(7):335–340.

7. Vinokurov A.S. Research of algorithms of classification of three-dimensional point clouds and their effective realization on graphic processors. Access mode: http://masters.donntu.ru/2009/fvti/vinokurov/diss/index.htm.

8. Gorkavy I.N. Development and research of methods of processing and classification of three-dimensional data of airborne laser scanning. М.; 2011. 22 p. (In Russ.).

9. Kuzin A.A. Geodetic support of territories zoning on the degree of landslide processes hazard on the basis of GIS-technologies application. St. Petersburg; 2013. 133 p. (In Russ.).

10. Medvedev E.M., Danilin I.M., Melnikov S.R. Laser localization of land and forest. 2nd ed., rev. and supplement. M.: Geolidar, Geoskosmos; Krasnoyarsk: V.N. Sukachev Forest Institute SB RAS; 2007. 230 p. (In Russ.).

11. Sarychev D.S. Processing of laser scanning data. SAPR i GIS avtomobil'nykh dorog = CAD and GIS of highways. 2014;2(1):16–19. (In Russ.).

12. Krasilnikov N.N. Digital image processing. M.: Vuzovskaya kniga; 2001. 320 p. (In Russ.).

13. Vostrikov A., Sergeev M., Balonin N., Chernyshev S. Digital masking using mersenne matrices and their special images. In: Procedia computer science. Knowledge-Based and Intelligent Information and Engineering Systems: Proceedings of the 21st International Conference, KES 2017, 06–08 September 2017, Marseille, France. Elsevier B.V.; 2017. 2017;1:1151–1159.

14. Shapiro L., Stockman J. Computer vision. M.: BINOM. Knowledge Laboratory; 2006. 752 p. (In Russ.).

15. 1Melnikov S.R. Laser scanning. A new method of creating three-dimensional models of terrain and engineering objects. Gornaya promyshlennost' = Mining Industry. 2001;(5):3–5. (In Russ.).

16. Gruzman I.S. [et al.] Digital image processing in information systems. Novosibirsk: NSTU; 2000. 156 p. (In Russ.).

17. 1Mikhailov V.V., Kolpashchikov L.A., Sobolevsky V.A., Soloviev N.V., Yakushev G.K. Methodological approaches and algorithms for recognizing and counting animals in aerial photographs. Informacionno-upravljajushhie sistemy = Information and control systems. 2021;114(5):20–32. (In Russ.).

18. Ukhaneva A.V. Terrain relief construction: modern approach to process automation. Geodezija i kartografija = Geodesy and cartography. 2010;(11):24–29. (In Russ.).

19. Kazanin O.I., Drebenshtedt K. Mining education in the XXI century: global challenges and prospects. Zapiski Gornogo instituta = Journal of Mining Institute. 2017;225:369–375.

20. Mustafin M.G., Balandin V.N., Bryn M.Y., Matveev A.Yu., Menshikov I.V., Firsov Y.G. Topographic-geodesic and cartographic support of the Arctic zone of the Russian Federation. Zapiski Gornogo instituta = Journal of Mining Institute. 2018;232:375–382. (In Russ.).

21. Menshikov S.N., Dzhalyabov A.A., Vasiliev G.G., Leonovich I.A., Ermilov O.M. Spatial models developed using laser scanning at gas condensate fields of the northern construction-climatic zone. Zapiski Gornogo instituta = Journal of Mining Institute. 2019;238:430–437. (In Russ.).

22. Glazunov V.V., Burlutsky S.B., Shuvalova R.A., Zhdanov S.V. Improving the reliability of 3d modelling of a landslide slope based on engineering geophysics data. Zapiski Gornogo instituta = Journal of Mining Institute. 2022;257:771–782. (In Russ.).

23. Talovina I.V., Krikun N.S., Yurchenko Y.Y., Ageev A.S. Remote sensing techniques in the study of structural and geotectonic features of Iturup Island (The Kuril Islands). Zapiski Gornogo instituta = Journal of Mining Institute. 2022;254:158–172. (In Russ.).

24. Gusev V.N., Blishchenko A.A., Sannikova A.P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter. Zapiski Gornogo instituta = Journal of Mining Institute. 2022;254:173–179. (In Russ.).

25. Potekhin D.V., Galkin S.V. Use of machine learning technology to model the distribution of lithotypes in the Permo-Carboniferous oil deposit of the Usinskoye field. Zapiski Gornogo instituta = Journal of Mining Institute. 2023;259:41–51. (In Russ.).

26. Gospodarikov A.P., Revin I.E., Morozov K.V. A composite model for analyzing seismic monitoring data during mining operations on the example of the Kukisvumchorrskoye deposit of Apatit JSC. Zapiski Gornogo instituta = Journal of Mining Institute. 2023;262:571–580. (In Russ.).

27. Buzmakov S.A., Sannikov P.Y., Kuchin L.S., Igosheva E.A., Abdulmanova I.F. The use of unmanned aerial photography for interpreting the technogenic transformation of the natural environment during the oilfield operation. Zapiski Gornogo instituta = Journal of Mining Institute. 2023;260:180–193. (In Russ.).

28. Makhovikov A.B. Evolution of digital support for science and education in the USSR (Russia) since the 1960s until the end of the 2010s (based on the information of St. Petersburg Mining University). Voprosy istorii. 2022;(11-1):56–69. (In Russ.).

29. Ovchinnikova E.N., Krotova S.Y. Training Mining Engineers in the Context of Sustainable Development: A Moral and Ethical Aspect. European Journal of Contemporary Education. 2022;11(4):1192–1200. DOI: 10.13187/ejced.2022.4.1192.

30. Litvinenko V.S., Bowbrick I., Naumov I.A., Zaitseva Z. Global guidelines and requirements for professional competencies of natural resource extraction engineers: implications for ESG principles and sustainable development goals. Journal of Cleaner Production. 2022;338:1–9. DOI: 10.1016/j.jclepro.2022.130530.

31. Kryltcov S.B., Makhovikov A.B., Korobitcyna M.A. Novel approach to collect and process power quality data in medium-voltage distribution grids. Symmetry. 2021;13(3):460. DOI: 10.3390/sym13030460.

32. Makhovikov A.B., Kryltsov S.B., Matrokhina K.V., Trofimets V.Ya. Secured communication system for a metallurgical company. Tsvetnye Metally. 2023;(4):5–13. (In Russ.).

33. Krizsky V.N., Viktorov S.V., Luntovskaya Y.A. Modeling the transient resistance of trunk pipeline insulation based on measurements of the magnetic induction vector modulus. Mathematical Models and Computer Simulations. 2023;15(2):312–322. DOI: 10.1134/S2070048223020102.

34. Matrokhina K.V., Trofimets V.Ya., Mazakov E.B., Makhovikov A.B., Khaykin M.M. Development of methodology for scenario analysis of investment projects of enterprises of the mineral resource complex. Zapiski Gornogo instituta = Journal of Mining Institute. 2023;259:112–124. (In Russ.).

35. Mazakov E.B. From the history of cybernetics on the example of the Department of Information Systems and Computer Engineering of the Mining University. Voprosy istorii. 2022;5(1):107–117. (In Russ.).

36. Krizsky V.N., Alexandrov P.N. Solution of a Linear Coefficient Inverse Problem of Geophysics Based on Integral Equations. Izvestiya, Physics of the Solid Earth. 2022;58(2):274–280. DOI: 10.1134/S106935132202001X.

37. Shestakova I.G., Bezzubova O.V., Rybakov V.V. Philosophy in a technical university: development strategies in the digital age. Perspektivy nauki i obrazovania = Perspectives of Science and Education. 2022;55(1):186–199.

Zaytseva Ekaterina Viktorovna
Cand. Sci. (Tech.)
Email: Zaytseva_EV@pers.spmi.ru

WoS | Scopus | ORCID | eLibrary |

St. Petersburg Mining University

St. Petersburg, Russia

Kochneva Alina Alexandrovna
Cand. Sci. (Tech.)
Email: Kochneva_AA@pers.spmi.ru

WoS | Scopus | ORCID | eLibrary |

St. Petersburg Mining University

St. Petersburg, Russia

Katuntsov Evgeniy Viktorovich
Cand. Sci. (Tech.)
Email: Katuntsov_EV@pers.spmi.ru

WoS | Scopus | ORCID | eLibrary |

St. Petersburg Mining University

St. Petersburg, Russia

Keywords: digital terrain model (DTM), digital relief model (DRM), airborne laser scanning, quality assessment of digital terrain models, digital mine model

For citation: Zaytseva E.V., Kochneva A.A., Katuntsov E.V. Reducing redundancy of laser scanning data for building digital terrain models. Modeling, Optimization and Information Technology. 2023;11(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1467 DOI: 10.26102/2310-6018/2023.43.4.033 (In Russ).

206

Full text in PDF

Received 31.10.2023

Revised 27.11.2023

Accepted 21.12.2023

Published 31.12.2023