Метод поддержки принятия решений при многокритериальном выборе рецензентов с использованием интегральной оценки и методов обработки естественного языка в научном журнале
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Decision support method in reviewer multicriteria choice using integrated assessment and natural language processing methods in a scientific journal

idLatypova V.A.

UDC 519.816, 81`322.2
DOI: 10.26102/2310-6018/2023.43.4.035

  • Abstract
  • List of references
  • About authors

A reviewer multicriteria choice task appears when defining reviewers for manuscripts submitted to the scientific journal. This is related to the fact that it is necessary not only choose reviewers, whose publications are most similar to manuscripts on the specifics of the research, but also take into account and other, not less significant, reviewers’ features. In the existing works, it is suggested to use different criteria, mainly involving reviewers’ expertise and authority. However, such criteria as quality of work in a reviewer role has not gained proper attention. The experience of reviewing, the quality of manuscript assessing and reviewer’s activity can significantly affect the result of the reviewing and its time. In the paper, it is suggested a decision support method in reviewer multicriteria choice using integrated assessment, taking into account the quality of work in a reviewer role, and natural language processing methods in scientific journal, which will allow to solve the described issue. Testing of the method on data on reviewers of scientific journal “Information technologies” showed its validity. Taking into account such criteria as the quality of work in a reviewer role in addition to the generally accepted features has a substantial impact on the reviewer choice for manuscripts.

1. Zhao X., Zhang Y. Reviewer assignment algorithms for peer review automation: A survey. Information Processing & Management. 2022;59:103028. DOI: 10.1016/j.ipm.2022.103028.

2. Hurst J.R., Howard E.C., Wedzicha J.A. Reviewer selection: Author or editor knows best? Thorax. 2005;60:799. DOI: 10.1136/thx.2005.051870.

3. Rodriguez M.A., Bollen J. An algorithm to determine peer-reviewers. Proceedings of the 17th ACM conference on Information and knowledge management (CIKM '08), 26-30 October 2008, Napa Valley, California, USA. Association for Computing Machinery; 2008. p. 319–328. DOI: 10.1145/1458082.1458127.

4. Nguyen J., Snchez-Hernndez G., Agell N., Rovira X., Angulo C. A decision support tool using order weighted averaging for conference review assignment. Pattern Recogn. Lett. 2018;105:114–120. DOI: 10.1016/j.patrec.2017.09.020.

5. Liu X., Suel T., Memon N. A robust model for paper reviewer assignment. Proceedings of the 8th ACM Conference on Recommender systems (RecSys '14), 6-10 October 2014, Foster City, Silicon Valley, USA. Association for Computing Machinery; 2014. p. 25–32. DOI: 10.1145/2645710.2645749.

6. Li X., Watanabe T. Automatic paper-to-reviewer assignment, based on the matching degree of the reviewers. Procedia Computer Science. 2013;22:633–642. DOI: 10.1016/j.procs.2013.09.144.

7. Di Mauro N., Basile T., Ferilli S. GRAPE: an expert review assignment component for scientific conference management systems. In: Ali M., Esposito F. (eds.) Innovations in Applied Artificial Intelligence. Lecture Notes in Computer Science, vol 3533. Berlin, Springer; 2005. p. 789-798. DOI: 10.1007/11504894_109.

8. Medakene A., Bouanane K., Eddoud A. A new approach for computing the matching degree in the paper-to-reviewer assignment problem. Proceedings of the 2019 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS), 15-16 December 2019, Skikda, Algeria. Institute of Electrical and Electronics Engineers Inc.; 2019. p. 1–8. DOI: 10.1109/ICTAACS48474.2019.8988127.

9. Latypova V., Martynov V., Turganov A. Decision support system in online training process management for implementing complex open ended assignments in engineering education. Proceedings of the V international conference on information technologies in engineering education (Inforino), 14–17 April 2020, Moscow. Institute of Electrical and Electronics Engineers Inc.; 2020. p. 1–5. DOI: 10.1109/Inforino48376.2020.9111821.

10. Saaty T.L., Vargas L.G. Models, methods, concepts & applications of the analytic hierarchy process. New York, Springer Science+Business Media; 2001. 333p.

11. Latypova V.A. About using approximate calculating methods in the analytic hierarchy process. Internet-journal “Naukovedeniye. 2017;9(6):128. URL: https://naukovedenie.ru/PDF/146TVN617.pdf. (In Russ) (accessed 30.11.2023).

12. Latypova V.A. A comparative analysis and a choice of tools implementing analytic hierarchy process. Modeling, Optimization and Information Technology. 2018;6(4):322-347. URL: https://moitvivt.ru/ru/journal/article?id=534 (In Russ) (accessed 30.11.2023). DOI: 10.26102/2310-6018/2018.23.4.024.

Latypova Viktoriya A.
Сandidate of Technical Sciences

Scopus | ORCID | eLibrary |

Ufa University of Science and Technology

Ufa, the Russian Federation

Keywords: decision support, multicriteria choice, scientific journal, reviewer, integrated assessment, natural language processing

For citation: Latypova V.A. Decision support method in reviewer multicriteria choice using integrated assessment and natural language processing methods in a scientific journal. Modeling, Optimization and Information Technology. 2023;11(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1487 DOI: 10.26102/2310-6018/2023.43.4.035 (In Russ).

208

Full text in PDF

Received 04.12.2023

Revised 21.12.2023

Published 31.12.2023