Keywords: information and measurement system, robot, MP-11, simulation model, pneumatic circuit, transients, fluidSIM-P, pneumatic
Information and measuring system of the pneumatic actuator of an industrial robot of specialized purpose model MP-11
UDC 004.942
DOI: 10.26102/2310-6018/2024.45.2.026
One of the most important tasks faced by developers of pneumatic automation systems is to reduce the time of analysis and design at the research stage. The use of specialized software makes it possible to significantly improve the operation of pneumatic automation systems. Simulation of pneumatic robotic manipulators allows you to identify vulnerabilities, optimize control processes, conduct virtual tests of various work scenarios, which will help improve planning and management, while achieving significant improvements in system performance and reliability. The article presents an information and measuring system for the pneumatic drive of the robot (manipulator) links for specialized industrial purposes of the MP-11 model in the form of a simulation model, which is implemented by the method of simulation of pneumatic systems on the FluidSIM-P (FluidSIM Pneumatic) package of the Festo company. The result of the operation of the information and measuring system are graphs of transient processes of movement of the rods of pneumatic cylinders, which adequately describe the real operating mode of the pneumatic actuator of the manipulator MP-11. The materials of the article are of practical value for specialists involved in the design and analysis of automation systems. In addition, the results of the article may be useful for students and researchers studying the field of automation and system design. Anyone interested in the application of automation technologies in various fields will find valuable information in the article for their work and research.
1. Orošnjak M., Jocanović M., Karanović V. Simulation and Modeling of A Hydraulic System in FluidSim. In: XVII International Scientific Conference on Industrial Systems (IS'17), 4-6 October 2017, Novi Sad, Serbia. 2017. P. 50–53.
2. Cojocaru R., Bocănete P., Deleanu D., Frățilă C., Axinte T., Diaconu M. Analysis of Pneumatic Circuits with FluidSim. Hidraulica. 2021;(2):70–75.
3. Sandler I.L., Ivanov D.V., Terekhin M.A., Bragina I.N., Lebakin I.V., Zaripov R.A. Simulation Model of a Pneumatic Drive for Compressing Electrodes of Stationary Contact Spot Welding Machine. In: 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), 08 10 November 2023, Lipetsk, Russia. Lipetsk: Lipetsk State Technical University, 2023. P. 608–612. https://doi.org/10.1109/summa60232.2023.10349376
4. Ghinea M., Agud M., Bodog M. Simulation of pneumatic systems using automation studio™ software platform. International Journal of Simulation Modeling. 2020;19(4):655–666. https://doi.org/10.2507/IJSIMM19-4-541
5. Ishmet'ev E.N., Chistyakov D.V., Panov A.N., Bodrov E.E., Mikheeva V.O. Upravlenie elektrotekhnicheskimi kompleksami na baze kontrollerov B&R: diagnostika v Automation Studio. Magnitogorsk: Nosov Magnitogorck State Technical University; 2017. 86 p. (In Russ.).
6. Sandler I.L. Modelirovanie informatsionno-izmeritel'noi sistemy pnevmaticheskogo privoda spetsializirovannogo promyshlennogo robota MP-9S. Vestnik SamGUPS. 2023;(1):108–119. (In Russ.).
7. Yurevich E.I. Osnovy robototekhniki. Saint Petersburg: BKhV-Peterburg; 2018. 304 p. (In Russ.).
8. Yurevich E.I. Osnovy robototekhniki. Saint Petersburg: BKhV-Peterburg; 2010. 359 p. (In Russ.).
9. Chelpanov I.B. Ustroistvo promyshlennykh robotov. Uchebnik dlya uchashchikhsya priborostroitel'nykh tekhnikumov. Saint Petersburg: Politehknika; 2001. 203 p. (In Russ.).
10. Kapustin N.M., Kuznetsov P.M., D'yakonova N.P. Kompleksnaya avtomatizatsiya v mashinostroenii. Moscow: Academia; 2005. 368 p. (In Russ.).
11. Goryainov V.I., Sosenushkin E.N., Shibakov V.G. Avtomatizatsiya perenaladki shtampovochnogo oborudovaniya. Moscow; Naberezhnye Chelny: Moscow State University of Technology «STANKIN»; 2000. 83 p. (In Russ.).
12. Kulebyakin A.A., Legenkin Yu.A. Apparatnye i programmnye sredstva sistem ChPU. Yaroslavl: Yaroslavl State Technical University; 2010. 87 p. (In Russ.).
13. Zyuzev A.M., Mudrov M.V., Kostylev A.V. Programmiruemye logicheskie kontrollery v sistemakh maloi avtomatizatsii i avtomatizatsii zdanii i sooruzhenii. Yekaterinburg: Ural Federal University named after the first President of Russia B.N. Yeltsin; 2023. 118 p. (In Russ.).
14. Kravtsov A.G. Izuchenie konstruktsii manipulyatorov promyshlennykh robotov RB-241 i MP 11.01. Orenburg: OSU; 2013. 57 p. (In Russ.).
15. Ivanov D.V., Sandler I.L., Kozlov E.V. Identification of Fractional Linear Dynamical Systems with Autocorrelated Errors in Variables by Generalized Instrumental Variables. IFAC-PapersOnLine. 2018;51(32):580–584. https://doi.org/10.1016/j.ifacol.2018.11.485
16. Sandler I.L. Recurrent estimation of parameters being multidimensional in terms of input and output of various orders of linear dynamic systems in the presence of autocorrelated noises in input and output signals. Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki = University proceedings. Volga region. Physical and mathematical sciences. 2016;(4):14–27. (In Russ.). https://doi.org/10.21685/2072-3040-2016-4-2
17. Ivanov D.V., Sandler I.L., Burtseva E.A., Vlasova V.N. Identifation of slide valve dynamics with errors in variables. In: 13th International Conference on Mechanical Engineering, Automation and Control Systems, MEACS 2018: IOP Conference Series: Materials Science and Engineering: Volume 560, 12-14 December 2018, Novosibirsk, Russia. Novosibirsk: Institute of Physics Publishing; 2019. https://doi.org/10.1088/1757-899X/560/1/012021
Keywords: information and measurement system, robot, MP-11, simulation model, pneumatic circuit, transients, fluidSIM-P, pneumatic
For citation: Sandler I.L., Ivanov D.V., Portnov A.A. Information and measuring system of the pneumatic actuator of an industrial robot of specialized purpose model MP-11. Modeling, Optimization and Information Technology. 2024;12(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1553 DOI: 10.26102/2310-6018/2024.45.2.026 (In Russ).
Received 13.05.2024
Revised 23.05.2024
Accepted 31.05.2024
Published 30.06.2024