Разработка алгоритма повышения релевантности рекомендаций в сервисах онлайн-знакомств с использованием нейронных сетей
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Development of an algorithm for improving relevance of recommendations in online dating services using neural networks

idShatalov A.S., Reznikov K.N.,  Astakhov V.V.,  Akinina Y.S. 

UDC 004.021
DOI: 10.26102/2310-6018/2024.46.3.002

  • Abstract
  • List of references
  • About authors

The presented article examines an innovative algorithm for assessing the attractiveness of potential partners in the context of online dating. The algorithm employs two neural networks: a generative network and a convolutional network. The generative neural network creates visual profiles based on various attractiveness parameters, while the convolutional neural network analyzes and extracts these parameters from images of real users. This approach allows for the dynamic adaptation of user preferences, ensuring high relevance of recommendations even with a limited pool of candidates in a given region. The method described in the article aims to significantly enhance the user experience and increase the success rate of online dating. By utilizing neural networks, the algorithm can account for individual user preferences and adapt to them in real-time. This makes the recommendations more accurate and personalized, which in turn facilitates the creation of deeper and higher-quality interpersonal connections. The research also emphasizes the importance of forming stable and happy long-term relationships. The presented approach contributes to this by providing users with a more satisfactory and effective experience in online dating. Thus, the use of algorithms and neural networks in the field of online dating has the potential to greatly improve the quality of interactions and interpersonal connections, which is a crucial aspect in the modern digital age.

1. Malakhov Yu.A., Androsov A.A., Averchenkov A.V. Analysis and application of generative-adeversarial networks for producing high quality images. Ergodizain = Ergodesign. 2020;(4):167–176. (In Russ.). https://doi.org/10.30987/2658-4026-2020-4-167-176

2. Pchelintsev S.Y., Liashkov M.A., Kovaleva O.A. Method for creating synthetic data sets for training neural network models for object recognition. Informatsionno-upravlyayushchie sistemy = Information and Control Systems. 2022;(3):9–19. (In Russ.). https://doi.org/10.31799/1684-8853-2022-3-9-19

3. Okunev S.V. Application of augmentation and a generative-adversarial neural network to increase data sets. In: Aktual'nye problemy aviatsii i kosmonavtiki: Sbornik materialov VI Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi Dnyu kosmonavtiki: V 3-kh tomakh: Volume 2, 13-17 April 2020, Krasnoyarsk, Russia. Krasnoyarsk: Reshetnev Siberian State University of Science and Technology; 2020. pp. 162–164. (In Russ.).

4. Ganeeva Yu.Kh., Myasnikov E.V. Identifying persons from iris images using neural networks for image segmentation and feature extraction. Komp'yuternaya optika = Computer Optics. 2022;46(2):308–316. (In Russ.). https://doi.org/10.18287/2412-6179-CO-1023

5. Branitskiy A.A., Sharma Y.D., Kotenko I.V., Fedorchenko E.V., Krasov A.V., Ushakov I.A. Determination of the mental state of users of the social network Reddit based on machine learning methods. Informatsionno-upravlyayushchie sistemy = Information and Control Systems. 2022;(1):8–18. (In Russ.). https://doi.org/10.31799/1684-8853-2022-1-8-18

6. Bychkov A.G., Kiseleva T.V., Maslova E.V. Usage of convolutional neural networks for image classification. Vestnik Sibirskogo gosudarstvennogo industrial'nogo universiteta = Bulletin of the Siberian State Industrial University. 2023;(1):39–49. (In Russ.). https://doi.org/10.57070/2304-4497-2023-1(43)-39-49

7. Druki A.A. Sistema poiska, vydeleniya i raspoznavaniya lits na izobrazheniyakh. Izvestiya Tomskogo politekhnicheskogo universiteta = Bulletin of the Tomsk Polytechnic University. 2011;318(5):64–70. (In Russ.).

8. Men'shikova N.V., Portnov I.V., Nikolaev I.E. Obzor rekomendatel'nykh sistem i vozmozhnostei ucheta konteksta pri formirovanii individual'nykh rekomendatsii. Academy. 2016;(6):20–22. (In Russ.).

9. Pankratova L.S. Ethical problems and regulation policy of artificial intelligence technologies implementation in online dating services. Azimut nauchnykh issledovanii: ekonomika i upravlenie = Azimuth of Scientific Research: Economics and Administration. 2019;8(4):47–50. (In Russ.).

10. Starykh N.V. Deviant behaviour in Internet communication: Diagnosis and prevention. Medialingvistika = Media Linguistics. 2020;7(4):516–530. (In Russ.). https://doi.org/10.21638/spbu22.2020.410

11. Bogdanov M.B., Smirnov I.B. Opportunities and limitations of digital footprints and machine learning methods in sociology. Monitoring obshchestvennogo mneniya: ekonomicheskie i sotsial'nye peremeny = Monitoring of Public Opinion: Economic and Social Changes. 2021;(1):304–328. (In Russ.). https://doi.org/10.14515/monitoring.2021.1.1760

12. Konstantinov I.A. Upravlenie riskami IT-proekta v sfere znakomstv. E-Scio. 2020;(6):610–623. (In Russ.).

Shatalov Aleksey Sergeevich

Email: alexey.shatalow@gmail.com

ORCID |

Voronezh State Technical University

Voronezh, Russian Federation

Reznikov Konstantin Nikolaevich
Specialist
Email: volt-er@yandex.ru

Voronezh State Technical University
LLC "KEENEYE"

Voronezh, Russian Federation

Astakhov Viktor Vladimirovich

Email: victor.lisophoria@gmail.com

Voronezh State Technical University

Voronezh, Russian Federation

Akinina Yulia Sergeevna
Candidate of technical sciences, Associate professor
Email: julakinn@mail.ru

Voronezh State Technical University

Voronezh, Russian Federation

Keywords: neural networks, attractiveness, online dating, generative neural network, convolutional neural network, matchmaking, recommendations, user preferences, relevance

For citation: Shatalov A.S., Reznikov K.N., Astakhov V.V., Akinina Y.S. Development of an algorithm for improving relevance of recommendations in online dating services using neural networks. Modeling, Optimization and Information Technology. 2024;12(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1607 DOI: 10.26102/2310-6018/2024.46.3.002 (In Russ).

235

Full text in PDF

Received 13.06.2024

Revised 25.06.2024

Accepted 09.07.2024

Published 30.09.2024