Применение метода отжига в задаче диагностики электрических дефектов аналоговых схем радиоэлектронных устройств
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Application of the annealing method in the task of diagnosing electrical defects in analog circuits of radioelectronic devices

idUvaysov S.U., idChernoverskaya V.V., Nguyen Duc Hai,  Wo Thae Hai,  Pham Xuan Han 

UDC УДК 621.396.69
DOI: 10.26102/2310-6018/2024.47.4.022

  • Abstract
  • List of references
  • About authors

Improving the methods of troubleshooting electronic devices remains an urgent and timely task at the current stage of development of this class of technical means. An electrical circuit that implements the functionality of an electronic device often contains elements whose parameters differ from the nominal values due to the peculiarities of the technological process of their production. This, in turn, may lead to a change in the output characteristics of the device, a malfunction or failure of an electronic device. The article presents the results of a study on the diagnosis of electrical defects in analog circuits of radioelectronic devices based on a modified algorithm for simulated annealing. The difficulties of applying the classical scheme of the algorithm and the impossibility of unambiguous identification of defects in electrical and radio elements are analyzed. A modified algorithm scheme is proposed that allows solving the optimization problem of finding the global extremum of the objective function for the problem of diagnosing the electronic component base. It is shown that for the algorithm to work effectively, it is necessary to correctly adjust its parameters and explore all possible options for generating neighboring solutions and temperature reduction mechanisms in order to choose the best implementation option. The annealing simulation algorithm has a number of advantages over other optimization algorithms. The operating time of the simulated annealing algorithm can be controlled using a cooling schedule. At the same time, an abrupt shutdown of the algorithm is allowed due to a change in the final temperature parameter. There is always a solution, no matter how much time has passed in the search process. This flexibility explains the widespread popularity of the annealing simulation algorithm in various fields of scientific research and applied problem solving.

1. Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by Simulated Annealing. Science. 1983;220(4598):671–680. https://doi.org/10.1126/science.220.4598.671

2. Zhang D., Liu Y., M’Hallah R., Leung S.C.H. A simulated annealing with a new neighborhood structure base algorithm for high school timetabling problems. European Journal of Operational Research. 2010;203(3):550–558. https://doi.org/10.1016/j.ejor.2009.09.014

3. Geng X., Chen Z., Yang W., Shi D., Zhao K. Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search. Applied Soft Computing. 2011;11(4):3680–3689. https://doi.org/10.1016/j.asoc.2011.01.039

4. Lo C.-C., Hsu C.-C. An annealing framework with learning memory. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans. 1998;28(5):648–661. https://doi.org/10.1109/3468.709611

5. Černý V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications. 1985;45(1):41–51. https://doi.org/10.1007/BF00940812

6. Eglese R.W. Simulated Annealing: A tool for Operational Research. European Journal of Operational Research. 1990;46(3):271–281. https://doi.org/10.1016/0377-2217(90)90001-R

7. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. Equation of State Calculations by Fast Computing Machines. Journal of Chemical Physics. 1953;21(6):1087–1092. https://doi.org/10.1063/1.1699114

8. Gendreau M., Hertz A., Laporte G. A Tabu Search Heuristic for the Vehicle Routing Problem. Management Science. 1994;40(10):1276–1290. https://doi.org/10.1287/mnsc.40.10.1276

9. Onwubolu G., Davendra D. Scheduling flow shops using differential evolution algorithm. European Journal of Operational Research. 2006;171(2):674–692. https://doi.org/10.1016/j.ejor.2004.08.043

10. Baraglia R., Hidalgo J.I., Perego R. A hybrid heuristic for the traveling salesman problem. IEEE Transactions on Evolutionary Computation. 2001;5(6):613–622. https://doi.org/10.1109/4235.974843

11. Glover F. Artificial Intelligence, Heuristic Frameworks and Tabu Search. Managerial and Decision Economics. 1990;11(5):365–375. https://doi.org/10.1002/mde.4090110512

12. Bandler J.W., Salama A.E. Troubleshooting in analog circuits. Proceedings of the Institute of Electrical and Radio Electronics Engineers. 1985;73(8):35–87.

Uvaysov Saygid Uvaysovich
Doctor of Technical Sciences, professor

ORCID |

MIREA-Russian University of Technology

Moscow, Russia

Chernoverskaya Viktoria Vladimirovna
Candidate of Technical Sciences, docent

ORCID | eLibrary |

MIREA-Russian University of Technology

Moscow, Russia

Nguyen Duc Hai

MIREA-Russian University of Technology

Moscow, Russia

Wo Thae Hai

MIREA-Russian University of Technology

Moscow, Russia

Pham Xuan Han

MIREA-Russian University of Technology

Moscow, Russia

Keywords: annealing simulation algorithm, optimal solution, radioelectronic device, defect diagnosis, electric radio element, global minimum, local minimum, mechanism for generating neighboring solutions, markov chain length, temperature reduction scheme

For citation: Uvaysov S.U., Chernoverskaya V.V., Nguyen Duc Hai, Wo Thae Hai, Pham Xuan Han Application of the annealing method in the task of diagnosing electrical defects in analog circuits of radioelectronic devices. Modeling, Optimization and Information Technology. 2024;12(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1618 DOI: 10.26102/2310-6018/2024.47.4.022 (In Russ).

91

Full text in PDF

Received 24.10.2024

Revised 14.11.2024

Accepted 25.11.2024