Прогноз распространенности онкозаболеваний среди жителей Московского региона на основе модели регрессии
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

The forecast of the prevalence of cancer among residents of the Moscow region based on a regression model

idStepanov V.S.

UDC 616-006; 519.237.5
DOI: 10.26102/2310-6018/2024.46.3.023

  • Abstract
  • List of references
  • About authors

The article makes an attempt to identify the relationship between cancer prevalence in urban areas and several environmental factors, taking into account a demographic indicator. The regression dependence of the prevalence of oncologic diseases in the territories of urban districts of the Moscow region and several districts of the capital with the proportion of elderly residents and a number of sanitary and hygienic indicators of the territories has been established. The complex of factor explanatory variables included the indicator of atmospheric air pollution of the territory, two variables with the concentration of surface ozone and benz(a)pyrene on it, qualitative variables in terms of the level of its man-made pollution and the volumes of polluted water discharge, the proportion of elderly population. Daily cigarette smoking by adults is also taken into account. On this basis, a regression model with a variable structure is constructed, which has a determination coefficient of 98.5% and an approximation error below 2%. The model parameters were estimated using the least squares method based on data for 51 urban districts of the region and 5 districts of Moscow. The presence of lags in the factors makes it possible to make a forecast of the number of people suffering from tumors of any localization, in the municipal context and with a planning horizon of 1 year. Based on the created model, it is possible to plan primary prevention measures more effectively and allocate medical resources.

1. Budilova E.V., Lagutin M.B. Socially significant diseases of the Russian population and environmental factors (84 regions of the Russian Federation for 2014–2016). Vestnik Moskovskogo universiteta. Seriya XXIII: Antropologiya = Moscow University Anthropology Bulletin. 2019;(4):87–104. (In Russ.). https://doi.org/10.32521/2074-8132.2019.4.087-104

2. Kolpak E.P., Frantsuzova I.S., Kuvshinova K.V., Senkov R.E. Neoplasm Morbidity among the Population of Russia. International Journal of Advanced Biotechnology and Research. 2017;8(3):2315–2322.

3. Domozhirova A.S. Complex health statistical prediction as a basis for the long-term planning of specialized cancer care in the areas of the Chelyabinsk Region. Onkologiya. Zhurnal im. P.A. Gertsena = P.A. Herzen Journal of Oncology. 2016;5(1):47–50. (In Russ.). https://doi.org/10.17116/onkolog20165147-50.

4. Efimova N.V., Myl'nikova I.V. Assessment of the contribution made by oncogenic factors to the risk of malignant neo-plasms development for the urban population of working age. Health Risk Analysis. 2021;(3):99–106. https://doi.org/10.21668/health.risk/2021.3.09.eng

5. Zaridze D.G., Maksimovich D.M. Prevention of malignant neoplasms. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology. 2017;4(2):8–25. (In Russ.). https://doi.org/10.17650/2313-805X-2017-4-2-8-25

6. Solenova L.G. Current approaches to assessment of the impact of the environmental contamination on cancer risk. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology. 2020;7(1):17–22. (In Russ.). https://doi.org/10.17650/2313-805X-2020-7-1-17-22

7. Saltykova M.M., Balakaeva A.V., Fedichkina T.P., Bobrovnitskii I.P. Leading air pollution related reasons of death. Gigiena i sanitaria = Hygiene and Sanitation. 2020;99(4):337–343. (In Russ.). https://doi.org/10.47470/0016-9900-2020-99-4-337-343

8. Kolpakova A.F. On the relationship of anthropogenic air pollution by particulate matter with cancer risk. Gigiena i sanitaria = Hygiene and Sanitation. 2020;99(3):298–302. (In Russ.). https://doi.org/10.47470/0016-9900-2020-99-3-298-302

9. Zvyagintsev A.M., Kuznetsova I.N., Shalygina I.Yu., Lezina E.A., Lapchenko V.A., Nikiforova M.P., Demin V.I. Investigation and monitoring of surface ozone in Russia. Trudy Gidrometcentra Rossii = Proceedings of the Hydrometcentre of Russia. 2017;(365):56–70. (In Russ.).

10. Zvyagintsev А.М. Statistical forecast of surface ozone concentrations in Moscow. Meteorologiya i gidrologiya. 2008;(8):49–59. (In Russ.).

11. Samorodskaia I.V., Semenov V.Yu., Boitsov S.A. The impact of medical and non-medical factors on population mortality: environment factors. Problemi socialnoi gigieni, zdravookhranenia i istorii meditsini = Problems of Social Hygiene, Public Health and History of Medicine. 2017;25(5):260–265. (In Russ.).

12. Tarasova S.A. Modeling of Oncological Morbidity of Kursk Region's Population. System Analysis & Mathematical Modeling. 2023;5(2):142–152. (In Russ.). https://doi.org/10.17150/2713-1734.2023.5(2).142-152

13. Stepanov V.S. The forecast of cancer prevalence in the regions and municipalities of Russia based on a multivariate model. Modelirovanie, optimizatsiya i informatsionnye tekhnologii = Modeling, Optimization and Information Technology. 2023;11(1). (In Russ.). https://doi.org/10.26102/2310-6018/2023.40.1.022

14. Stepanov V.S., Rybkina I.D., Orlova E.S. Environmental factors and bad habits in models of the malignancy prevalence in the municipalities of Altai Krai and other regions. Modelirovanie, optimizatsiya i informatsionnye tekhnologii = Modeling, Optimization and Information Technology. 2023;11(4). (In Russ.). https://doi.org/10.26102/2310-6018/2023.43.4.022

15. Radespiel-Tröger M., Geiss K., Twardella D., Maier W., Meyer M. Cancer incidence in urban, rural, and densely populated districts close to core cities in Bavaria, Germany. International Archives of Occupational and Environmental Health. 2018;91(2):155–174. https://doi.org/10.1007/s00420-017-1266-3

16. Veremchuk L.V., Zhernovoi M.V., Kiku P.F. Environmental dependence of oncological diseases in the Primorye territory. Uspekhi nauk o zhizni. 2010;(2):107–114. (In Russ.). https://elibrary.ru/item.asp?id=16551607

17. Chernogaeva G.M., Zhadanovskaya E.A., Malevanov Yu.A. Pollution sources and air quality in the Moscow Region. Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. 2019;(2):109–116. (In Russ.). https://doi.org/10.31857/S2587-556620192109-116

18. Agarkov A.I. Analysis of interrelation and importance of medical and social risk factors of malignant new growths development in industrially developed region. Sistemnyj analiz i upravlenie v biomedicinskih sistemah = System Analysis and Management in Biomedical Systems. 2014;13(1):240–244. (In Russ.).

19. Ermolitskaya M.Z., Kiku P.F., Abakumov A.I. Model for assessing the influence of quality of life indicators on the breast cancer incidence. Zdravoohranenie Rossijskoj Federacii = Health care of the Russian Federation. 2024;68(2):116–122. (In Russ.). https://doi.org/10.47470/0044-197X-2024-68-2-116-122

20. Meshkov N.A., Valtseva E.A., Baeva Yu.I., Krylitsyna E.A. Assessment the conditionality of Samara city population incidence under the influence of environmental factors. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk = Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2017;19(2 2):300–306. (In Russ.).

21. Sekeroglu B., Tuncal K. Prediction of cancer incidence rates for the European continent using machine learning models. Health Informatics Journal. 2021;27(1). https://doi.org/10.1177/1460458220983878

22. Carlberg C. Regression Analysis. Microsoft Excel. Moscow: Vil'yams; 2017. 400 p. (In Russ.).

23. Stepanov V.S. On the application of regression models to statistics of territories in order to improve the average life expectancy. In: III International Demographic Forum "Demography and Global Challenges": Volume 2, Section 2–5, 23–25 May 2024, Voronezh, Russia. Voronezh: Izdatel'stvo "Tsifrovaya poligrafiya"; 2024. pp. 765–776. (In Russ.). https://www.elibrary.ru/item.asp?id=68635495

24. Stepanov V.S. On application of regression models: assessment of well-being and life expectancy in the Volga Federal District. In: Innovatsionnye tekhnologii upravleniya sotsial'no-ekonomicheskim razvitiem regionov Rossii: Materialy XVI Mezhdunarodnoi nauchno-prakticheskoi konferentsii, 23–24 May 2024, Ufa, Russia. Ufa: ISEI UFITs RAN; 2024. pp. 186–192. (In Russ.). https://doi.org/10.31040/978-5-6051263-4-8

25. Arkhipova O.E., Chernogubova E.A., Chibichyan M.B., Kogan M.I. Epidemiology of prostate cancer in the Rostov region. Spatio-temporal statistics. Onkourologiya = Cancer Urology. 2016;12(4):52–59. (In Russ.). https://doi.org/10.17650/1726-9776-2016-12-4-52-59

26. Melkonyan R.G. Garbage Crisis of Moscow and the Moscow Region. Kachestvo i zhizn' = Quality and Life. 2017;(4):71–77. (In Russ.).

Stepanov Vladimir Sergeevich
Candidate of Physical and Mathematical Sciences
Email: _stepanov@cemi.rssi.ru

ORCID | eLibrary |

the Central Economics and Mathematics Institute of the RAS

Moscow, Russian Federation

Keywords: regression model, atmospheric air pollution, discharge of polluted waste water, benz(a)pyrene, surface ozone, suspended particles, technogenic pollution, malignant neoplasm, city district, municipality

For citation: Stepanov V.S. The forecast of the prevalence of cancer among residents of the Moscow region based on a regression model. Modeling, Optimization and Information Technology. 2024;12(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1644 DOI: 10.26102/2310-6018/2024.46.3.023 .

76

Full text in PDF

Received 09.08.2024

Revised 04.09.2024

Accepted 12.09.2024