Keywords: optical coherence tomography, medical elastography, fiber optic probe, structural images, functional images, topological skeleton, biological tissue, tissue-imitating phantoms, volumetric motion artifacts
Topological skeletons-based correction of volumetric motion artifacts in optical coherence tomography and elastography
UDC 621.391.8
DOI: 10.26102/2310-6018/2024.47.4.008
An original approach to image stabilization in optical coherence tomography and elastography was presented. The key features of the proposed approach are: I) binarization and application of mathematical morphology digital operations; II) parallel construction of a topological skeleton for each optical image with an emphasis on the equivalent high- and low-level signal; III) complexing of topological skeletons; IV) comparison of a sequence of optical images by combined topological skeletons using «quench» points; V) compensation of volumetric motion artifacts by «reassembling» the original sets of interference signals. The computational efficiency of the proposed method with respect to the dynamics of interference signal acquisition by a specific device was achieved by using sequential and parallel operations. Сomputations using the central and graphical processing units, namely GPU and CPU, were combined for this. High efficiency of volumetric motion artifact correction in optical coherence tomography and elastography is ensured by robustness of topological skeletons constructed with emphasis on high-level equivalent signal to speckle noise corresponding to constructive interference (bright speckles). Topological skeletons for low-level equivalent signal are correspondingly robust to dark speckles (destructive interference result).
1. Moiseev A.A., Ksenofontov S.Yu., Terpelov D.A., Kiseleva E.B., Yashin K.S., Sirotkina M.A., Gladkova N.D., Gelikonov G.V. Optical Coherence Angiography without Motion Correction Preprocessing. Laser Physics Letters. 2019;16(4). https://doi.org/10.1088/1612-202X/aaf996
2. Liu X., Hubbi B., Zhou X. Spatial Coordinate Corrected Motion Tracking for Optical Coherence Elastography. Biomedical Optics Express. 2019;10(12):6160–6171. https://doi.org/10.1364/BOE.10.006160
3. Frolov S.V., Potlov A.Yu. An Endoscopic Optical Coherence Tomography System with Improved Precision of Probe Positioning. Biomedical Engineering. 2019;53(1):6–10. https://doi.org/10.1007/s10527-019-09866-4
4. Krajancich B., Curatolo A., Fang Q., Zilkens R., Dessauvagie B.F., Saunders C.M., Kennedy B.F. Handheld Optical Palpation of Turbid Tissue with Motion-Artifact Correction. Biomedical Optics Express. 2019;10(1):226–241. https://doi.org/10.1364/BOE.10.000226
5. Hepburn M.S., Foo K.Y., Wijesinghe P., Munro P.R.T., Chin L., Kennedy B.F. Speckle-Dependent Accuracy in Phase-Sensitive Optical Coherence Tomography. Optics Express. 2021;29(11):16950–16968. https://doi.org/10.1364/OE.417954
6. Parmar A., Singh K. Motion-Artifact-Free Single Shot Two-Beam Optical Coherence Elastography System. Journal of Biomedical Optics. 2024;29(2). https://doi.org/10.1117/1.jbo.29.2.025003
7. Gong Z., Johnstone M.A., Wang R.K. iStent Insertion Orientation and Impact on Trabecular Meshwork Motion Resolved by Optical Coherence Tomography Imaging. Journal of Biomedical Optics. 2024;29(7). https://doi.org/10.1117/1.JBO.29.7.076008
8. Wagner J., Robledo L., Pezold S., Eggenschwiler L., Hasler P., Goldblum D., Cattin P.C. Model-Based Motion Compensation for Corneal Topography by Optical Coherence Tomography. OSA Continuum. 2020;3(7):1967–1987. https://doi.org/10.1364/OSAC.389898
9. Ploner S.B., Kraus M.F., Moult E.M., Husvogt L., Schottenhamml J., Alibhai A.Y., Waheed N.K., Duker J.S., Fujimoto J.G., Maier A.K. Efficient and High Accuracy 3-D OCT Angiography Motion Correction in Pathology. Biomedical Optics Express. 2021;12(1):125–146. https://doi.org/10.1364/BOE.411117
10. Potlov A., Frolov S., Proskurin S. Features of Diffuse Photon Migration in Soft Biological Tissue. In: Journal of Physics: Conference Series: Volume 1084: 4th International Scientific and Practical Conference on Virtual Simulation, Prototyping and Industrial Design 2017, VSPID 2017, 15–17 November 2017, Tambov, Russia. Institute of Physics Publishing; 2018. https://doi.org/10.1088/1742-6596/1084/1/012012
11. Bashkatov A.N., Genina E.A., Kochubey V.I., Tuchin V.V. Quantification of Tissue Optical Properties: Perspectives for Precise Optical Diagnostics, Phototherapy and Laser Surgery. Journal of Physics D: Applied Physics. 2016;49(50). https://doi.org/10.1088/0022-3727/49/50/501001
12. Sirotkina M.A., Gubarkova E.V., Plekhanov A.A., Sovetsky A.A., Elagin V.V., Matveyev A.L., Matveev L.A., Kuznetsov S.S., Zagaynova E.V., Gladkova N.D., Zaitsev V.Y. In vivo Assessment of Functional and Morphological Alterations in Tumors under Treatment using OCT-Angiography Combined with OCT-Elastography. Biomedical Optics Express. 2020;11(3):1365–1382. https://doi.org/10.1364/BOE.386419
13. Frolov S.V., Sindeev S.V., Liepsch D., Balasso A., Arnold P., Kirschke J.S., Prothmann S., Potlov A.Yu. Newtonian and non-Newtonian blood flow at a 90º bifurcation of the cerebral artery: a comparative study of fluid viscosity models. Journal of Mechanics in Medicine and Biology. 2018;18(5). https://doi.org/10.1142/S0219519418500434
14. Potlov A.Yu. Fractal approach to Monte Carlo based numerical simulation of photon transport in biological tissues. Modeling, Optimization and Information Technology. 2024;12(3). (In Russ.). https://doi.org/10.26102/2310-6018/2024.46.3.022
Keywords: optical coherence tomography, medical elastography, fiber optic probe, structural images, functional images, topological skeleton, biological tissue, tissue-imitating phantoms, volumetric motion artifacts
For citation: Potlov A.Y. Topological skeletons-based correction of volumetric motion artifacts in optical coherence tomography and elastography. Modeling, Optimization and Information Technology. 2024;12(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1715 DOI: 10.26102/2310-6018/2024.47.4.008 (In Russ).
Received 12.10.2024
Revised 21.10.2024
Accepted 25.10.2024