Разработка и исследование программной системы биометрической аутентификации пользователя по динамике рукописной подписи с использованием нечетких признаков
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Development and research of a software system for biometric authentication of a user based on the dynamics of a handwritten signature using fuzzy features

idAnisimova E.S., idAnikin I.V.

UDC 004.624+004.032.26
DOI: 10.26102/2310-6018/2024.47.4.027

  • Abstract
  • List of references
  • About authors

The complexity of reliable biometric user authentication based on the dynamics of handwritten signatures is due to their high intra-class variability associated with changes in the physical and emotional state of a person, as well as writing conditions. Existing approaches do not always provide sufficient accuracy and resistance to these variations. This work is devoted to the study and development of a software system for biometric authentication using the apparatus of fuzzy set theory to improve the reliability of recognition. In this work, we proposed an original feature model of a dynamic handwritten signature, including a set of static and dynamic features, including fuzzy ones, taking into account the uncertainty and variability of handwriting. As a signature standard, we used a set of membership functions built on the basis of the components of the feature model. We proposed an architecture of the recognition system consisting of training subsystems, creating a test signature model, and making a decision on authenticity. We developed a software system that implements the proposed approach using the SciLab mathematical package and the C++ programming language. The system provides the functionality of user registration and formation of a training sample based on signatures entered using a graphic tablet, as well as recognition of test signatures. We conducted an experimental study based on the MCYT Signature 100 signature collection. During the study, we experimentally determined the optimal value of the cluster compactness degree for constructing feature membership functions that minimizes the equal error rate coefficient. The experimental results demonstrate a decrease in the equal error rate coefficient compared to known methods, which indicates the effectiveness of the proposed approach. The use of fuzzy features helps to increase the system's resistance to variations in signatures and, as a result, increase the reliability of biometric authentication in various applications that require identity verification. The results of the study can be used to improve the security of authentication systems and protect confidential information.

1. Tolosana R., Vera-Rodriguez R., Gonzalez-Garcia C., et al. ICDAR 2021 Competition on On-Line Signature Verification. In: Document Analysis and Recognition – ICDAR 2021: 16th International Conference: Proceedings, Part IV, 5–10 September 2021, Lausanne, Switzerland. Cham: Springer; 2021. pp. 723–737. https://doi.org/10.1007/978-3-030-86337-1_48

2. Guru D.S., Prakash H.N. Online Signature Verification and Recognition: An Approach Based on Symbolic Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009;31(6):1059–1073. https://doi.org/10.1109/TPAMI.2008.302

3. Jain A.K., Griess F.D., Connell S.D. On-line signature verification. Pattern Recognition. 2002;35(12):2963–2972. https://doi.org/10.1016/S0031-3203(01)00240-0

4. Kutsman V., Kolesnytskyj O. Dynamic handwritten signature identification using spiking neural network. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska. 2021;11(3):34–39. https://doi.org/10.35784/iapgos.2718

5. Maiorana E., Campisi P., Fierrez J., Ortega-Garcia J., Neri A. Cancelable Templates for Sequence-Based Biometrics with Application to On-line Signature Recognition. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans. 2010;40(3):525–538. https://doi.org/10.1109/TSMCA.2010.2041653

6. Maiorana E., Martinez-Diaz M., Campisi P., Ortega-Garcia J., Neri A. Template Protection for HMM-based On-Line Signature Authentication. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 23–28 June 2008, Anchorage, AK, USA. IEEE; 2008. pp. 1–6. https://doi.org/10.1109/CVPRW.2008.4563114

7. Zadeh L.A. Similarity relations and fuzzy orderings. Information Sciences. 1971;3(2):177–200. https://doi.org/10.1016/s0020-0255(71)80005-1

8. Zalasiński M., Cpałka K., Laskowski Ł., Wunsch D.C., Przybyszewski K. An Algorithm for the Evolutionary-Fuzzy Generation of on-Line Signature Hybrid Descriptors. Journal of Artificial Intelligence and Soft Computing Research. 2020;10(3):173–187. https://doi.org/10.2478/jaiscr-2020-0012

9. Anikin I., Anisimova E. Framework for Biometric User Authentication Based on a Dynamic Handwritten Signature. In: Cyber-Physical Systems: Intelligent Models and Algorithms. Cham: Springer; 2022. pp. 219–231. https://doi.org/10.1007/978-3-030-95116-0_18

10. Anisimova E.S., Anikin I.V. Fuzzy Sets Theory Approach for Recognition Handwritten Signatures. In: Advances in Automation II: Proceedings of the International Russian Automation Conference, RusAutoConf2020, 6–12 September 2020, Sochi, Russia. Cham: Springer; 2021. pp. 969–982. https://doi.org/10.1007/978-3-030-71119-1_93

Anisimova Ellina Sergeevna
candidate of technical sciences

WoS | Scopus | ORCID | eLibrary |

Elabuga Institute (branch) of Kazan Federal University

Elabuga, Russian Federation

Anikin Igor Vyacheslavovich
Doctor of Technical Sciences, Professor

WoS | Scopus | ORCID | eLibrary |

Kazan National Research Technical University named after A.N. Tupolev-KAI

Kazan, Russian Federation

Keywords: biometric authentication, handwritten signature, graphic tablet, signature input dynamics, fuzzy set theory, fuzzy logic, signature model, signature standard, pressure pattern, writing rhythm

For citation: Anisimova E.S., Anikin I.V. Development and research of a software system for biometric authentication of a user based on the dynamics of a handwritten signature using fuzzy features. Modeling, Optimization and Information Technology. 2024;12(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1750 DOI: 10.26102/2310-6018/2024.47.4.027 (In Russ).

73

Full text in PDF

Received 19.11.2024

Revised 29.11.2024

Accepted 03.12.2024