Анализ устойчивости водонасыщенных грунтов при циклическом воздействии: математические модели и прогнозы
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Analysis of the stability of water-saturated soils under cyclic influence: mathematical models and forecasts

idTishin N.R., Ozmidov O.R.,  idProletarsky A.V.

UDC 004.942+624.131.37
DOI: 10.26102/2310-6018/2025.48.1.001

  • Abstract
  • List of references
  • About authors

The article discusses the mathematical modeling of soil liquefaction under the influence of dynamic loads, such as seismic, storm, or technogenic cyclic impacts. The liquefaction process, in which soil loses strength and bearing capacity, is critical for assessing the safety of construction objects, especially in areas with increased seismic activity or water-saturated soils. Several approaches were used for modeling, including the following functions: the exponential function from the work of H. Bilge et al. (2009), the logarithmic function from the work of V. Lentini et al. (2018), the power function (polynomial) proposed by C. Guoxing et al. (2018), an additional logarithmic function from the study of E. Meziane et al. (2021), and a hyperbolic function proposed by the authors of this article, which approximated the soil's resistance to cyclic impacts. The study analyzed laboratory test data for various soil types, combined into engineering-geological elements. Each function was analyzed in terms of approximation accuracy using the least squares method, which minimized the deviations between experimental and theoretical values. When evaluating the functions, consideration was given to how each behaves under a large number of loading cycles, which is important for predicting liquefaction under intense and prolonged loads. The selection of the optimal function was made by comparing the MSE and R2 metrics presented in the results tables. The application of the research results has practical significance in geotechnical design, especially for calculating foundations and underground structures in conditions of potentially liquefiable soils. Choosing the most suitable function for modeling soil liquefaction allows predicting soil stability under long-term and intense cyclic loads, minimizing the risk of deformation and destruction of structures.

1. Gratchev I.B., Sassa K., Osipov V.I., Sokolov V.N. The liquefaction of clayey soils under cyclic loading. Engineering Geology. 2006;86(1):70–84. https://doi.org/10.1016/J.ENGGEO.2006.04.006

2. Morgunov K.P., Kolosov M.A. Soil Liquefaction Problems in the Foundations Hydraulic Structures. Science and Technique. 2022;21(3):201–210. (In Russ.). https://doi.org/10.21122/2227-1031-2022-21-3-201-210

3. Chaloulos Y.K., Giannakou A., Drosos V., Tasiopoulou P., Chacko J., De Wit S. Liquefaction-induced settlements of residential buildings subjected to induced earthquakes. Soil Dynamics and Earthquake Engineering. 2020;129. https://doi.org/10.1016/j.soildyn.2019.105880

4. Ter-Martirosyan A., Othman A. Simulation of soil liquefaction due to earthquake loading. In: E3S Web of Conferences: 22nd International Scientific Conference on Construction the Formation of Living Environment, FORM 2019: Volume 97, 18–21 April 2019, Tashkent, Uzbekistan. EDP Sciences; 2019. https://doi.org/10.1051/e3sconf/20199703025

5. Konstantinova T.G. The role of soil liquefaction in macroseismic consequences of strong earthquakes. Engineering Survey. 2015;(13):28–33. (In Russ.).

6. Yuan J., Wang Y., Zhan B., Yuan X., Wu X., Ma J. Comprehensive investigation and analysis of liquefaction damage caused by the Ms7.4 Maduo earthquake in 2021 on the Tibetan Plateau, China. Soil Dynamics and Earthquake Engineering. 2022;155. https://doi.org/10.1016/j.soildyn.2022.107191

7. Mirsayapov I.T., Koroleva I.V. Estimation of seismic stability of layered soil bases composed of clays and water-saturated sandstones. News of the Kazan State University of Architecture and Engineering. 2015;(1):99–106. (In Russ.).

8. Bilge H.T., Unutmaz B., Yunatci A.A., Yunatci I., Cetin K.O. Liquefaction Triggering Response Under Wave-Induced Cyclic Loading. In: Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering: Volume 7: Offshore Geotechnics; Petroleum Technology, 31 May – 5 June 2009, Honolulu, USA. 2009. pp. 361–366. https://doi.org/10.1115/OMAE2009-80123

9. Lentini V., Castelli F. Liquefaction Resistance of Sandy Soils from Undrained Cyclic Triaxial Tests. Geotechnical and Geological Engineering. 2019;37(1):201–216. https://doi.org/10.1007/s10706-018-0603-y

10. Guoxing C., Qi W., Tian S., Kai Z., Enquan Z., Lingyu X. Cyclic Behaviors of Saturated Sand-Gravel Mixtures under Undrained Cyclic Triaxial Loading. Journal of Earthquake Engineering. 2018;25(4). https://doi.org/10.1080/13632469.2018.1540370

11. Meziane El.H., Benessalah I., Arab A. An insight into the liquefaction resistance of sand using cyclic undrained triaxial tests: Effect of the relative density and the loading amplitude. Acta Geotechnica Slovenica. 2021;18(2).

12. Tishin N.R., Ozmidov O.R., Proletarsky A.V. Integrated data storage system for geological laboratory experiments. Modeling, Optimization and Information Technology. 2024;12(1). (In Russ.). https://doi.org/10.26102/2310-6018/2024.44.1.007

13. Stokes Z., Mandal A., Wong W.K. Using Differential Evolution to Design Optimal Experiments. Chemometrics and Intelligent Laboratory Systems. 2020;199. https://doi.org/10.1016/j.chemolab.2020.103955

14. Liyanapathirana D.S. Numerical Modelling of Dynamic Soil Liquefaction in Sloping Ground. In: Australian Earthquake Engineering Conference. 2007.

Tishin Nikita Romanovich

ORCID | eLibrary |

JSC MOSTDORGEOTREST
Bauman Moscow State Technical University

Mosсow, Russian Federation

Ozmidov Oleg Rostislavovich
PhD in Geological and Mineralogical Sciences
Email: ozmidov@mail.ru

JSC MOSTDORGEOTREST

Mosсow, Russian Federation

Proletarsky Andrey Viktorovich
PhD in Technical Sciences, Professor

ORCID | eLibrary |

Bauman Moscow State Technical University

Mosсow, Russian Federation

Keywords: soil liquefaction, mathematical modeling, geotechnical engineering, dynamic loads, soil liquefaction function, liquefaction potential

For citation: Tishin N.R., Ozmidov O.R., Proletarsky A.V. Analysis of the stability of water-saturated soils under cyclic influence: mathematical models and forecasts. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1765 DOI: 10.26102/2310-6018/2025.48.1.001 (In Russ).

37

Full text in PDF

Received 05.12.2024

Revised 23.12.2024

Accepted 10.01.2025