Метод генерации вопросов закрытого типа с использованием LLM
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

A method for generating closed-type questions using LLMs

Dagaev A.E. 

UDC 004.89
DOI: 10.26102/2310-6018/2025.48.1.021

  • Abstract
  • List of references
  • About authors

This study presents a method for closed-ended question generation leveraging large language models (LLM) to improve the quality and relevance of generated questions. The proposed framework combines the stages of generation, verification, and refinement, which allows for the improvement of low-quality questions through feedback rather than simply discarding them. The method was tested on three widely recognized datasets: SQuAD, Natural Questions, and RACE. Key evaluation metrics, including ROUGE, BLEU, and METEOR, consistently showed performance gains across all tested models. Four LLM configurations were used: O1, O1-mini, GPT-4o, and GPT-4o-mini, with O1 achieving the highest results across all datasets and metrics. Expert evaluation revealed an accuracy improvement of up to 14.4% compared to generation without verification and refinement. The results highlight the method's effectiveness in ensuring greater clarity, factual correctness, and contextual relevance in generated questions. The combination of automated verification and refinement further enhances outcomes, showcasing the potential of LLMs to refine text generation tasks. These findings will benefit researchers in natural language processing, educational technology, and professionals working on adaptive learning systems and corporate training software.

Keywords: question generation, large language models, artificial intelligence, natural language processing, o1, o1-mini, GPT-4o, GPT-4o-mini

For citation: Dagaev A.E. A method for generating closed-type questions using LLMs. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1799 DOI: 10.26102/2310-6018/2025.48.1.021 (In Russ).

252

Full text in PDF

Received 13.01.2025

Revised 14.02.2025

Accepted 18.02.2025

Published 31.03.2025