Система комплексирования сенсорных данных в бортовых системах управления беспилотными авиационными системами
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Sensor data integration system in onboard control systems of unmanned aerial systems

idGuliutin N.N., idErmienko N.A., idAntamoshkin O.A.

UDC 629.7; 681.3; 004.42
DOI: 10.26102/2310-6018/2025.48.1.019

  • Abstract
  • List of references
  • About authors

Modern unmanned aerial systems (UAS) play a key role in various industries, including environmental monitoring, geodesy, agriculture, and forestry. One of the most critical factors for their successful application is the integration of data from various sensors, such as global navigation satellite systems, inertial navigation systems, lidars, cameras, and thermal imagers. Sensor data fusion significantly enhances the accuracy, reliability, and functionality of control systems. This paper explores data integration methods, including traditional algorithms like Kalman filters and their extended versions, as well as modern approaches based on deep learning models, such as FusionNet and Deep Sensor Fusion. Experimental studies have shown that learning-based models outperform traditional algorithms, achieving up to a 40 % improvement in navigation accuracy and enhanced resilience to noise and external disturbances. The proposed approaches demonstrate the potential to expand UAS applications in autonomous navigation, cartography, and monitoring, particularly in challenging operational environments. Future development prospects include the implementation of hyperspectral sensors and the development of adaptive data integration methods to further improve the efficiency and effectiveness of unmanned systems.

1. Gulyutin N.N. Unmanned Aerial Vehicles in Forest Pathological Monitoring. In: Reshetnevskie chteniya: Materialy XXVI Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi pamyati general'nogo konstruktora raketno-kosmicheskikh sistem akademika M.F. Reshetneva: Part 2, 09–11 November 2022, Krasnoyarsk, Russia. Krasnoyarsk: Reshetnev Siberian State University of Science and Technology; 2022. pp. 305–307. (In Russ.).

2. Watts A.C., Ambrosia V.G., Hinkley E.A. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sensing. 2012;4(6):1671–1692. https://doi.org/10.3390/rs4061671

3. Balestrieri E., Daponte P., De Vito L., Lamonaca F. Sensors and Measurements for Unmanned Systems: An Overview. Sensors. 2021;21(4). https://doi.org/10.3390/s21041518

4. Antamoshkin O.A. Designing of highly reliable real-time systems. Trudy MAI. 2011;(45). (In Russ.). URL: https://trudymai.ru/published.php?ID=25347

5. Chekmarev S.A., Khanov V.Kh., Antamoshkin O.A. Modification of fault injection method via on-chip debugging for processor cores of systems-on-chip. In: 2015 International Siberian Conference on Control and Communications (SIBCON), 21–23 May 2015, Omsk, Russia. IEEE; 2015. https://doi.org/10.1109/SIBCON.2015.7147267

6. Montañez O.J., Suarez M.J., Fernandez E.A. Application of Data Sensor Fusion Using Extended Kalman Filter Algorithm for Identification and Tracking of Moving Targets from LiDAR–Radar Data. Remote Sensing. 2023;15(13). https://doi.org/10.3390/rs15133396

7. Chen W., Zhou C., Shang G., Wang X., Li Z., Xu C., Hu K. SLAM Overview: From Single Sensor to Heterogeneous Fusion. Remote Sensing. 2022;14(23). https://doi.org/10.3390/rs14236033

8. Guliutin N., Antamoshkin O. Enhancing unmanned aerial vehicle capabilities: integrating YOLO algorithms for diverse industrial applications. In: Hybrid Methods of Modeling and Optimization in Complex Systems (HMMOCS-II 2023): Proceedings of the II International Workshop: Volume 59, 28–30 November 2023, Krasnoyarsk, Russia. EDP Sciences; 2024. https://doi.org/10.1051/itmconf/20245903012

9. Guliutin N.N., Ermienko N.A. Application of Decision Trees Ensembles in Earth Remote Sensing Problems from Unmanned Aerial Vehicles. In: Regional'nye problemy distantsionnogo zondirovaniya Zemli: Materialy XI Mezhdunarodnoi nauchnoi konferentsii, 10–13 September 2024, Krasnoyarsk, Russia. Krasnoyarsk: Siberian Federal University; 2024. pp. 77–80. (In Russ.).

10. Wong C.-C., Feng H.-M., Kuo K.-L. Multi-Sensor Fusion Simultaneous Localization Mapping Based on Deep Reinforcement Learning and Multi-Model Adaptive Estimation. Sensors. 2024;24(1). https://doi.org/10.3390/s24010048

11. Zhang R., Shao Z., Huang X., Wang J., Li D. Object Detection in UAV Images via Global Density Fused Convolutional Network. Remote Sensing. 2020;12(19). https://doi.org/10.3390/rs12193140

12. Caballero-Martin D., Lopez-Guede J.M., Estevez J., Graña M. Artificial Intelligence Applied to Drone Control: A State of the Art. Drones. 2024;8(7). https://doi.org/10.3390/drones8070296

13. Dudczyk J., Czyba R., Skrzypczyk K. Multi-Sensory Data Fusion in Terms of UAV Detection in 3D Space. Sensors. 2022;22(12). https://doi.org/10.3390/s22124323

14. Zhang Z., Zhu L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones. 2023;7(6). https://doi.org/10.3390/drones7060398

15. Stuart M.B., McGonigle A.J.S., Willmott J.R. Hyperspectral Imaging in Environmental Monitoring: A Review of Recent Developments and Technological Advances in Compact Field Deployable Systems. Sensors. 2019;19(14). https://doi.org/10.3390/s19143071

Guliutin Nikolai Nikolaevich

ORCID | eLibrary |

Siberian Federal University

Krasnoyarsk, Russia

Ermienko Nadezhda Aleksandrovna

ORCID | eLibrary |

Siberian Federal University

Krasnoyarsk, Russia

Antamoshkin Oleslav Aleksandrovich
Doctor of Technical Sciences, Professor

ORCID | eLibrary |

Siberian Federal University

Krasnoyarsk, Russia

Keywords: sensor data integration, unmanned aerial systems, kalman filter, fusionNet, deep Sensor Fusion, autonomous navigation, resilience to disturbances

For citation: Guliutin N.N., Ermienko N.A., Antamoshkin O.A. Sensor data integration system in onboard control systems of unmanned aerial systems. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1806 DOI: 10.26102/2310-6018/2025.48.1.019 .

55

Full text in PDF

Received 22.01.2025

Revised 06.02.2025

Accepted 10.02.2025