Моделирование трафика на регулируемом перекрестке с использованием сетей Петри с ограничениями на период времени срабатывания переходов
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Traffic modeling at a regulated intersection using Petri nets with constraints on the crossing time period

Pechenkin V.V.,  Kovatsenko I.N. 

UDC 004.023
DOI: 10.26102/2310-6018/2025.49.2.006

  • Abstract
  • List of references
  • About authors

The study of optimization of urban traffic flows becomes especially relevant in the current conditions of rapid urbanization and growth in the number of vehicles. Effective traffic flow management allows not only to reduce the level of traffic jams and congestion, but also to improve the environmental situation in cities, reduce travel time for drivers and passengers, and improve road safety. This paper focuses on the methods of traffic flow modeling on the example of a regulated intersection. The authors propose a method for modeling traffic flow based on the use of Petri nets with time constraints. The presented analysis of the computational experiment using the proposed model demonstrates its effectiveness in predicting traffic flows and identifying bottlenecks. The authors propose the structure and rules of functioning of Petri net elements, which allows to adapt the model to the specific conditions of a given intersection. The materials of the paper are of considerable practical value for solving problems of traffic flow optimization at regulated intersections. The proposed methods and models can be used by urban planners and engineers to develop more effective traffic management strategies, which ultimately contributes to improving the quality of life in cities and reducing traffic congestion. Thus, this study makes an important contribution to the development of the theory and practice of traffic flow management, offering new tools and approaches for solving current urban mobility problems.

1. Jeng A.A.-K., Jan R.-H., Chen Ch., Chang T.-L. Adaptive Urban Traffic Signal Control System with Bus Priority. In: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), 02–05 June 2013, Dresden, Germany. IEEE; 2014. P. 1–5. https://doi.org/10.1109/VTCSpring.2013.6691860

2. Cheshmehzangi A., Ardakani S.P. Urban Traffic Optimization Based on Modeling Analysis of Sector-Based Time Variable: The Case of Simulated Ningbo, China. Frontiers in Sustainable Cities. 2021;3. https://doi.org/10.3389/frsc.2021.629940

3. Hassan M.N., Hawas Ya.E. A methodology for rearranging transit stops for enhancing transit users generalized travel time. Journal of Traffic and Transportation Engineering. 2017;4(1):14–30. https://doi.org/10.1016/j.jtte.2016.09.012

4. Yadav V., Tripathi J.P., Thakur Bh.K. Traffic Light Optimization using Fuzzy Logic and Genetic Algorithim. Mathematical Statistician and Engineering Applications. 2022;71(4):10705–10712.

5. Nikolaeva R.V., Vyatskina D.V. Optimization of Traffic Flows at a Regulated Intersection. Roads and Transport Infrastructure. 2023;(1):41–48. (In Russ.).

6. Lu Ch.-T., Huang Yu, Lin J.-A., Wang L.-L. Identification of Traffic Flow Using Multi-Convolutional Neural Networks. International Journal of Network Security. 2022;24(4):747–754. https://doi.org/10.6633/IJNS.202207_24(4).18

7. Lamghari Elidrissi H., Nait Sidi Moh A., Tajer A. Modular Design and Adaptive Control of Urban Signalized Intersections Systems Using Synchronized Timed Petri Nets. Computing and Informatics. 2022;41(2):590–608. https://doi.org/10.31577/cai_2022_2_590

8. Dolinina O., Pechenkin V., Gubin N. Combined Intellectual and Petri Net with Priorities Approach to the Waste Disposal in the Smart City. In: Recent Research in Control Engineering and Decision Making: Proceedings of the International Conference on Information Technologies, 07–08 February 2019, Saratov, Russia. Cham: Springer; 2019. P. 755–767. https://doi.org/10.1007/978-3-030-12072-6_61

9. Dicesare F., Kulp P.T., Gile M., List G. The Application of Petri Nets to the Modeling, Analysis and Control of Intelligent Urban Traffic Networks. In: Application and Theory of Petri Nets 1994: 15th International Conference, 20–24 June 1994, Zaragoza, Spain. Heidelberg; Berlin: Springer; 1994. P. 2–15. https://doi.org/10.1007/3-540-58152-9_2

10. Liang X., Dang Yu., Hou Yi. Modeling and Analysis of Urban Traffic System Based on Colored Petri Nets. In: 2021 IEEE International Conference on Networking, Sensing and Control, 03–05 December 2021, Xiamen, China. IEEE; 2021. P. 1–6. https://doi.org/10.1109/ICNSC52481.2021.9702178

11. Qi H.-Sh., Yu Yi, Tang Q., Hu X.-B. Intersection Traffic Deadlock Formation and its Probability: a Petri Net-Based Modeling Approach. IET Intelligent Transport Systems. 2022;16(10):1342–1363. https://doi.org/10.1049/itr2.12210

12. Kovatsenko I.N., Pechenkin V.V. Ispol'zovanie setei petri s prioritetami dlya modelirovaniya trafika upravlyaemogo perekrestka. In: Sovremennye nauchnye tekhnologii i innovatsii: vklad v ustoichivoe razvitie i mnogopolyarnoe miroustroistvo: materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii, 12–13 April 2024, Uralsk, Kazakhstan. Uralsk: Kazakhstanskii universitet innovatsionnykh i telekommunikatsionnykh sistem; 2024. P. 116–123. (In Russ.).

13. Li R., Wang Sh., Jiao P., Lin Sh. Traffic Control Optimization Strategy Based on License Plate Recognition Data. Journal of Traffic and Transportation Engineering. 2023;10(1):45–57. https://doi.org/10.1016/j.jtte.2021.12.004

14. Bennett D. Guide to Traffic Management: Part 2: Traffic Theory. Sydney: Austroads; 2008. 122 p.

15. Pechenkin V.V., Kovatsenko I.N. Stokhasticheskoe modelirovanie dorozhnogo trafika na reguliruemom perekrestke. In: Problemy upravleniya v sotsial'no-ekonomicheskikh i tekhnicheskikh sistemakh: materialy XIX Mezhdunarodnoi nauchno-prakticheskoi konferentsii, 13–14 April 2023, Saratov, Russia. Saratov: ITs "Nauka"; 2023. P. 293–300. (In Russ.).

16. Timkova A.Yu. Imitatsionnoe modelirovanie dinamicheskogo izmeneniya passazhiropotoka v metropolitene. Vestnik transporta Povolzh'ya. 2023;(1):76–80. (In Russ.).

17. Klimov A.V. Coloured Petri Nets and the Language for Distributed Programming UPL: Their Comparison and Translation. Program Systems: Theory and Applications. 2023;14(4):91–122. (In Russ.). https://doi.org/10.25209/2079-3316-2023-14-4-91-122

Pechenkin Vitaly Vladimirovich
Doctor of Sociological Sciences, Candidate of Physical and Mathematical Sciences, Professor

eLibrary |

Yuri Gagarin State Technical University of Saratov

Saratov, Russian Federation

Kovatsenko Igor Nikolaevich

Email: igor.kovatsenko@yandex.ru

Yuri Gagarin State Technical University of Saratov

Saratov, Russian Federation

Keywords: road traffic, controlled intersection, petri net, time restrictions, mesoscopic model

For citation: Pechenkin V.V., Kovatsenko I.N. Traffic modeling at a regulated intersection using Petri nets with constraints on the crossing time period. Modeling, Optimization and Information Technology. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1841 DOI: 10.26102/2310-6018/2025.49.2.006 (In Russ).

32

Full text in PDF

Received 12.03.2025

Revised 08.04.2025

Accepted 14.04.2025