Сегментация объемных образований печени на мультифазных КТ-изображениях с использованием фреймворка nnU-Net
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Segmentation of liver volumetric lesions in multiphase CT images using the nnU-Net framework

idKulikov A., idKashirina I.L., idSavkinа E.

UDC 004.932.2
DOI: 10.26102/2310-6018/2025.48.1.040

  • Abstract
  • List of references
  • About authors

The article presents a study on the application of the nnU-Net (v2) framework for automatic segmentation and classification of liver space-occupying lesions on abdominal computed tomography. The main attention is paid to the effect of the batch size and the use of data from different contrast phases on the classification accuracy of such lesions as cysts, hemangiomas, carcinomas, and focal nodular hyperplasia (FNH). During the experiments, batch sizes of 2, 3, and 4 were used, as well as data from two contrast phases ‒ arterial and venous. The results showed that the optimal batch size is 3 or 4, depending on the pathology, and the use of data from two contrast phases significantly improves the accuracy and sensitivity of space-occupying lesions classification, especially for carcinomas and cysts. The achieved best sensitivity rates were 100% for carcinomas, 94% for cysts, 81% for hemangiomas, and 84% for FNH. The paper confirms the effectiveness of nnU-Net v2 for solving medical image segmentation and classification problems and highlights the importance of choosing the right training parameters and data to achieve the best results in medical diagnostics.

1. Sato M., Jin Z., Suzuki K. Semantic Segmentation of Liver Tumor in Contrast-enhanced Hepatic CT by Using Deep Learning with Hessian-based Enhancer with Small Training Dataset Size. In: 2021 IEEE 18th International Symposium on Biomedical Imaging, 13–16 April 2021, Nice, France. IEEE; 2021. pp. 34–37. https://doi.org/10.1109/ISBI48211.2021.9433929

2. Dostovalova A.M., Gorshenin A.K., Starichkova Ju.V., Arzamasov K.M. Comparative analysis of modifications of U-Net neuronal network architectures in medical image segmentation. Digital Diagnostics. 2024;5(4):833–853. (In Russ.). https://doi.org/10.17816/DD629866

3. Huang W., Liu W., Zhang X., et al. LIDIA: Precise Liver Tumor Diagnosis on Multi-Phase Contrast-Enhanced CT via Iterative Fusion and Asymmetric Contrastive Learning. In: Medical Image Computing and Computer Assisted Intervention – MICCAI: 27th International Conference: Proceedings, Part IX, 06–10 October 2024, Marrakesh, Morocco. Cham: Springer; 2024. pp. 394–404. https://doi.org/10.1007/978-3-031-72114-4_38

4. Isensee F., Jaeger P.F., Kohl S.A.A., Petersen J., Maier-Hein K.H. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods. 2021;18:203–211. https://doi.org/10.1038/s41592-020-01008-z

5. Isensee F., Wald T., Ulrich C., et al. nnU-Net Revisited: A Call for Rigorous Validation in 3D Medical Image Segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI: 27th International Conference: Proceedings, Part IX, 06–10 October 2024, Marrakesh, Morocco. Cham: Springer; 2024. pp. 488–498. https://doi.org/10.1007/978-3-031-72114-4_47

6. Ronneberger O., Fischer Ph., Brox Th. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference: Proceedings, Part III, 05–09 October, 2015, Munich, Germany. Cham: Springer; 2015. pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

7. Wang J., Zhang X., Guo L., Shi Ch., Tamura Sh. Multi-scale attention and deep supervision-based 3D UNet for automatic liver segmentation from CT. Mathematical Biosciences and Engineering. 2023;20(1):1297–1316. https://doi.org/10.3934/mbe.2023059

8. He K., Zhang X., Ren Sh., Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June 2016, Las Vegas, NV, USA. IEEE; 2016. pp. 770–778. https://doi.org/10.1109/CVPR.2016.90

9. Kovun V.A., Kashirina I.L. Usage of U-Net and W-Net neural network architectures for steel samples metallographic analysis. Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies. 2022;(1):101–110. (In Russ.). https://doi.org/10.17308/sait.2022.1/9205

10. Wang W., Wang F., Chen Q., et al. Phase Attention Model for Prediction of Early Recurrence of Hepatocellular Carcinoma With Multi-Phase CT Images and Clinical Data. Frontiers in Radiology. 2022;2. https://doi.org/10.3389/fradi.2022.856460

Kulikov Alexander
Candidate of Technical Sciences, Docent

ORCID |

MIREA - Russian Technological University

Moscow, Russian Federation

Kashirina Irina Leonidovna
Doctor of Engineering Sciences, Docent

WoS | Scopus | ORCID | eLibrary |

MIREA - Russian Technological University

Moscow, Russian Federation

Savkinа Ekaterina

ORCID |

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Moscow, Russian Federation

Keywords: nnU-Net v2, CT images, liver pathologies, batch size, segmentation, classification, medical images, contrast phases, carcinoma

For citation: Kulikov A., Kashirina I.L., Savkinа E. Segmentation of liver volumetric lesions in multiphase CT images using the nnU-Net framework. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1853 DOI: 10.26102/2310-6018/2025.48.1.040 (In Russ).

49

Full text in PDF

Received 13.03.2025

Revised 24.03.2025

Accepted 25.03.2025

Published 31.03.2025