Концептуальный подход к интеграции искусственного интеллекта в инженерную деятельность
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

A conceptual approach to the integration of artificial intelligence into engineering activities

idTerekhin M.A., idIvaschenko A.V., idKulakov G.A.

UDC 004.9
DOI: 10.26102/2310-6018/2025.49.2.031

  • Abstract
  • List of references
  • About authors

The article addresses the pressing issue of developing a unified information space for the integration of artificial intelligence components in the context of information support for design and technological preparation of production. It considers the challenge of creating a digital engineering assistant whose functions include the analysis of design documentation, processing of two-dimensional and three-dimensional models, and generation of new design and technological solutions. The model of interaction between the digital assistant and the engineer is proposed within the framework of integrating computer-aided design systems, engineering data management systems, and digital content management systems. This integration is based on the novel concept of "affordance", which is widely used to describe the characteristics of artificial intelligence systems, as well as in perception psychology and design to describe human interaction with technical devices. Using this concept, an information-logical model of an integrated enterprise information environment has been developed—an environment that brings together natural and artificial intelligence for the purpose of facilitating creative engineering activity. The classification of implementation options based on affordances is proposed as a foundation for compiling and annotating training datasets for generative models, as well as a guideline for formulating subsequent prompt queries. The proposed concept has been practically implemented and illustrated through the unification of medical device designs, including rehabilitation products, surgical navigation systems, multisensory simulators, and a modular expert virtual system. The findings presented in the article have practical value for the automation of engineering decision-making support, as well as for higher education in training engineering specialists, including in interdisciplinary fields such as medical engineering.

1. Kouzminov Ya., Kruchinskaia E. The Evaluation of GenAI Capabilities to Implement Professional Tasks. Foresight and STI Governance. 2024;18(4):67–76. (In Russ.). https://doi.org/10.17323/2500-2597.2024.4.67.76

2. Bubeck S., Chandrasekaran V., Eldan R., et al. Sparks of Artificial General Intelligence: Early Experiments with GPT-4. arXiv. URL: https://doi.org/10.48550/arXiv.2303.12712 [Accessed 10th February 2025].

3. Karelov S.V. The "Goodhart's trap" for AGI: The Problem of Comparative Analysis of Artificial Intelligence and Human Intelligence. Proceedings of the Institute of Psychology of Russian Academy of Sciences. 2023;3(3):5–22. (In Russ.).

4. Bratukhin A.G., Serebryanskii S.A., Strelets D.Yu., et al. Tsifrovye tekhnologii v zhiznennom tsikle rossiiskoi konkurentosposobnoi aviatsionnoi tekhniki. Moscow: Moscow Aviation Institute; 2020. 448 p. (In Russ.).

5. Sulimova E.A. Digital Enterprise Management Toolkit. Innovation & Investment. 2023;(5):158–160. (In Russ.).

6. Kazantseva L.V., Akatev I.A., Kazantseva D.M., Shiryaev M.V. The Formation of Data Architecture During the Design of a Corporate Information System. Science Intensive Technologies. 2023;24(4):21–26. (In Russ.).

7. Borovkov A.I., Kulemin V.J. Digital Engineering for the Creation of Products of High Degree of Technological Complexity Based on Digital Twins. Izvestiya Rossiiskoi akademii raketnykh i artilleriiskikh nauk. 2024;(3):98–104. (In Russ.).

8. Borovkov A., Burakov V., Martynets E., Ryabov Yu., Shcherbina L. Tsifrovaya platforma po razrabotke i primeneniyu tsifrovykh dvoinikov (Digital Twins) CML-BENCH® (Chast' 1). SAPR i grafika. 2023;(8):42–51. (In Russ.).

9. Borovkov A., Burakov V. Tsifrovaya platforma po razrabotke i primeneniyu tsifrovykh dvoinikov (Digital Twins) CML-BENCH® (Chast' 2). SAPR i grafika. 2023;(9):54–64. (In Russ.).

10. Borovkov A., Martynov I., Shander I., et al. Tsifrovaya platforma po razrabotke i primeneniyu tsifrovykh dvoinikov (Digital Twins) CML-BENCH® (Chast' 3). SAPR i grafika. 2023;(10):50–62. (In Russ.).

11. Sabbella D.S., Singh A., G. U.M. Artificial Intelligence in 3D CAD modelling. In: Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 24–25 February 2020, Vellore, India. IEEE; 2020. P. 1–5. https://doi.org/10.1109/ic-ETITE47903.2020.29

12. Shreya H.R., Kumar T. Impact of Artificial Intelligence Tools and Text-to-3D Model Generators on Interior Design. In: Smart Trends in Computing and Communications: Proceedings of SmartCom 2024: Volume 5, 12–13 January 2024, Pune, India. Singapore: Springer; 2024. P. 465–478. https://doi.org/10.1007/978-981-97-1313-4_40

13. Lykov A., Altamirano M., Konenkov M., et al. Industry 6.0: New Generation of Industry Driven by Generative AI and Swarm of Heterogeneous Robots. arXiv. URL: https://doi.org/10.48550/arXiv.2409.10106 [Accessed 10th February 2025].

14. Zou Q., Wu Yi., Liu Zh., Xu W., Gao Sh. Intelligent CAD 2.0. arXiv. URL: https://doi.org/10.48550/arXiv.2410.03759 [Accessed 11th February 2025].

15. Li K.-Yi., Huang Ch.-K., Chen Q.-W., Zhang H.-Ch., Tang Ts.-T. Leveraging Generative AI and CAD Automation for Efficient Automotive Wheel Design with Limited Data. [Preprint]. Research Square. URL: https://doi.org/10.21203/rs.3.rs-5041554/v1 [Accessed 11th February 2025].

16. Yeslam H.E., Von Maltzahn N.F., Nassar H.M. Revolutionizing CAD/CAM-Based Restorative Dental Processes and Materials with Artificial Intelligence: A Concise Narrative Review. PeerJ. 2024;12. https://doi.org/10.7717/peerj.17793

17. Shi H. Research on the Development and Application of Artificial Intelligence in Computer-Aided Design (CAD) Systems. Applied and Computational Engineering. 2024;106:131–136. https://doi.org/10.54254/2755-2721/106/20241314

18. Schoenfeld A.H. Pólya, Problem Solving, and Education. Mathematics Magazine. 1987;60(5):283–291. https://doi.org/10.2307/2690409

19. Al'tshuller G. Naiti ideyu: Vvedenie v TRIZ – teoriyu resheniya izobretatel'skikh zadach. Moscow: Alpina Publisher; 2024. 402 p. (In Russ.).

20. Karlov A.G. Features of Evolution and Application of the Computer Technologies Supporting Processes of Generation of Inventive Ideas. Automation and Measurement in Mechanical Engineering and Instrument Engineering. 2019;(2):75–80. (In Russ.).

21. Karlov A.G. Structure of Regular Continuous Innovations in Transition from Traditional Manufacture to the Advanced Industrial Technologies. Automation and Measurement in Mechanical Engineering and Instrument Engineering. 2019;(3):11–16. (In Russ.).

22. Gibson J. The Ecological Approach to Visual Perception. Moscow: Progress; 1988. 464 p. (In Russ.).

23. Greeno J.G. Gibson's Affordances. Psychological Review. 1994;101(2):336–342. https://doi.org/10.1037/0033-295x.101.2.336

24. Heras-Escribano M. The Philosophy of Affordances. Cham: Palgrave Macmillan; 2019. 232 p. https://doi.org/10.1007/978-3-319-98830-6

25. Ivaschenko A.V., Terekhin M.A. Engineering Creativity Support Information Technologies in Enterprise Solid Information Space. XXI century: Resumes of the Past and Challenges of the Present plus. 2024;13(4):46–54. (In Russ.).

26. Zakharov A.V., Khivintseva E.V., Chaplygin S.S., Starikovsky M.Yu., Elizarov M.A., Kolsanov A.V. Motor Rehabilitation of Patients in the Acute Period of Stroke Using Virtual Reality Technology. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(8–2):71–75. (In Russ.). https://doi.org/10.17116/jnevro202112108271

27. Zakharov A.V., Chaplygin S.S., Kolsanov A.V. Mathematical Model of Evaluation of Rehabilitation Efficiency Increase With the Help of Personalized Rehabilitation Selection Technology With the Help of Adapted Virtual Environment. Bulletin of the Medical Institute "REAVIZ". Rehabilitation, Doctor and Health. 2020;(4):125–134. (In Russ.). https://doi.org/10.20340/vmi-rvz.2020.4.14

28. Panchenkov D.N., Ivanov Yu.V., Kolsanov A.V., et al. Virtual Color 3D-Modeling in Liver Surgery. Grekov's Bulletin of Surgery. 2019;178(5):74–80. (In Russ.). https://doi.org/10.24884/0042-4625-2019-178-5-74-80

29. Kolsanov A.V., Vladimirova T.Yu., Chaplygin S.S., Zelyova O.V., Morev O.S. Surgical Navigation Systems in Otorhinolaryngology. Vestnik Roszdravnadzora. 2023;(5):118–122. (In Russ.).

Terekhin Mikhail Alexandrovich

Scopus | ORCID |

Samara State Medical University

Samara, Russian Federation

Ivaschenko Anton Vladimirovich
Doctor of Engineering Sciences, Professor

ORCID |

Samara State Medical University

Samara, Russian Federation

Kulakov Gennady Alekseevich
Doctor of Engineering Sciences, Professor

ORCID |

State Research and Production Enterprise ''Region''

Samara, Russian Federation

Keywords: computer-aided design systems, product information support, artificial intelligence, scientific and technical creativity, engineering activities, affordance

For citation: Terekhin M.A., Ivaschenko A.V., Kulakov G.A. A conceptual approach to the integration of artificial intelligence into engineering activities. Modeling, Optimization and Information Technology. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1907 DOI: 10.26102/2310-6018/2025.49.2.031 (In Russ).

36

Full text in PDF

Received 16.04.2025

Revised 16.05.2025

Accepted 26.05.2025