Keywords: gait events, neural networks, recurrent neural networks, motion capture, biomechanics, cerebral palsy, foot kinematics, machine learning
Automatic detection of gait events using recurrent neural networks
UDC 612.766:004.8.032.26:616.8-009.18-07
DOI: 10.26102/2310-6018/2025.50.3.004
Clinical gait analysis is a key tool for diagnosis and rehabilitation planning in patients with motor disorders; however, accurate and automatic detection of gait events remains a challenging task in resource-limited settings. Force plates are considered the gold standard for automatic gait event detection, but their application is limited in cases of pathological gait patterns and when patients use assistive rehabilitation devices. This paper presents an approach to automatic detection of gait events in children with pathological gait using recurrent neural networks. The presented methodology effectively identifies key gait events (heel strike and toe off). The study used kinematic data from patients with gait disorders, collected using an optical motion capture system under various conditions: barefoot walking, in orthopedic footwear, with orthoses, and other technical rehabilitation aids. Four models were trained to detect gait events (one for each leg and event type). The models demonstrated high sensitivity with small time delays between predicted and actual events. The proposed method can be used in clinical practice to automate data annotation and reduce processing time for gait analysis results.
1. Wren T.A.L., Gorton III G.E., Õunpuu S., Tucker C.A. Efficacy of Clinical Gait Analysis: A Systematic Review. Gait & Posture. 2011;34(2):149–153. https://doi.org/10.1016/j.gaitpost.2011.03.027
2. States R.A., Krzak J.J., Salem Ya., Godwin E.M., Bodkin A.W., McMulkin M.L. Instrumented Gait Analysis for Management of Gait Disorders in Children with Cerebral Palsy: A Scoping Review. Gait & Posture. 2021;90:1–8. https://doi.org/10.1016/j.gaitpost.2021.07.009
3. Del Din S., Elshehabi M., Galna B., et al. Gait Analysis with Wearables Predicts Conversion to Parkinson Disease. Annals of Neurology. 2019;86(3):357–367. https://doi.org/10.1002/ana.25548
4. Cicirelli G., Impedovo D., Dentamaro V., Marani R., Pirlo G., D’Orazio T.R. Human Gait Analysis in Neurodegenerative Diseases: A Review. IEEE Journal of Biomedical and Health Informatics. 2022;26(1):229–242. https://doi.org/10.1109/JBHI.2021.3092875
5. Veilleux L.-N., Raison M., Rauch F., Robert M., Ballaz L. Agreement of Spatio-Temporal Gait Parameters Between a Vertical Ground Reaction Force Decomposition Algorithm and a Motion Capture System. Gait & Posture. 2016;43:257–264. https://doi.org/10.1016/j.gaitpost.2015.10.007
6. Zeni Jr J.A., Richards J.G., Higginson J.S. Two Simple Methods for Determining Gait Events During Treadmill and Overground Walking Using Kinematic Data. Gait & Posture. 2008;27(4):710–714. https://doi.org/10.1016/j.gaitpost.2007.07.007
7. Ghoussayni S., Stevens Ch., Durham S., Ewins D. Assessment and Validation of a Simple Automated Method for the Detection of Gait Events and Intervals. Gait & Posture. 2004;20(3):266–272. https://doi.org/10.1016/j.gaitpost.2003.10.001
8. Hreljac A., Marshall R.N. Algorithms to Determine Event Timing During Normal Walking Using Kinematic Data. Journal of Biomechanics. 2000;33(6):783–786. https://doi.org/10.1016/S0021-9290(00)00014-2
9. De Asha A.R., Robinson M.A., Barton G.J. A Marker Based Kinematic Method of Identifying Initial Contact During Gait Suitable for Use in Real-Time Visual Feedback Applications. Gait & Posture. 2012;36(3):650–652. https://doi.org/10.1016/j.gaitpost.2012.04.016
10. Bruening D.A., Ridge S.T. Automated Event Detection Algorithms in Pathological Gait. Gait & Posture. 2014;39(1):472–477. https://doi.org/10.1016/j.gaitpost.2013.08.023
11. Gómez-Pérez C., Martori J.C., Diví A.P., Casanovas J.M., Samsó J.V., Font-Llagunes J.M. Gait Event Detection Using Kinematic Data in Children with Bilateral Spastic Cerebral Palsy. Clinical Biomechanics. 2021;90. https://doi.org/10.1016/j.clinbiomech.2021.105492
12. Prasanth H., Caban M., Keller U., et al. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors. 2021;21(8). https://doi.org/10.3390/s21082727
13. Niswander W., Kontson K. Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms. Sensors. 2021;21(12). https://doi.org/10.3390/s21123989
14. Voisard C., de l’Escalopier N., Ricard D., Oudre L. Automatic Gait Events Detection with Inertial Measurement Units: Healthy Subjects and Moderate to Severe Impaired Patients. Journal of NeuroEngineering and Rehabilitation. 2024;21. https://doi.org/10.1186/s12984-024-01405-x
15. Romijnders R., Warmerdam E., Hansen C., Welzel J., Schmidt G., Maetzler W. Validation of IMU-Based Gait Event Detection During Curved Walking and Turning in Older Adults and Parkinson’S Disease Patients. Journal of NeuroEngineering and Rehabilitation. 2021;18. https://doi.org/10.1186/s12984-021-00828-0
16. Zampier V.C., Simonsen M.B., Barbieri F.A., Oliveira A.S. On the Accuracy of Methods Identifying Gait Events Using Optical Motion Capture and a Single Inertial Measurement Unit on the Sacrum. [Preprint]. bioRxiv. URL: https://doi.org/10.1101/2025.03.09.642234 [Accessed 28th March 2025].
17. Narayan V., Awasthi Sh., Fatima N., Faiz M., Srivastava S. Deep Learning Approaches for Human Gait Recognition: A Review. In: 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), 27–29 January 2023, Greater Noida, India. IEEE; 2023. P. 763–768. https://doi.org/10.1109/AISC56616.2023.10085665
18. Dehzangi O., Taherisadr M., ChangalVala R. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion. Sensors. 2017;17(12). https://doi.org/10.3390/s17122735
19. Su B., Smith Ch., Gutierrez Farewik E. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units. Biosensors. 2020;10(9). https://doi.org/10.3390/bios10090109
20. Romijnders R., Warmerdam E., Hansen C., Schmidt G., Maetzler W. A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts. Sensors. 2022;22(10). https://doi.org/10.3390/s22103859
21. Wang F.-Ch., Li Yo.-Ch., Kuo T.-Yu., Chen S.-F., Lin Ch.-H. Real-Time Detection of Gait Events by Recurrent Neural Networks. IEEE Access. 2021;9:134849–134857. https://doi.org/10.1109/ACCESS.2021.3116047
22. Kreuzer D., Munz M. Deep Convolutional and LSTM Networks on Multi-Channel Time Series Data for Gait Phase Recognition. Sensors. 2021;21(3). https://doi.org/10.3390/s21030789
23. Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997;9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
24. Lee J., Hong W., Hur P. Continuous Gait Phase Estimation Using LSTM for Robotic Transfemoral Prosthesis Across Walking Speeds. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2021;29:1470–1477. https://doi.org/10.1109/tnsre.2021.3098689
25. Sarshar M., Polturi S., Schega L. Gait Phase Estimation by Using LSTM in IMU-Based Gait Analysis-Proof of Concept. Sensors. 2021;21(17). https://doi.org/10.3390/s21175749
26. Nazmi N., Rahman M.A.A., Yamamoto Sh.-I., Ahmad S.A. Walking Gait Event Detection Based on Electromyography Signals Using Artificial Neural Network. Biomedical Signal Processing and Control. 2019;47:334–343. https://doi.org/10.1016/j.bspc.2018.08.030
27. Kim Yo.K., Visscher R.M.S., Viehweger E., Singh N.B., Taylor W.R., Vogl F. A Deep-Learning Approach for Automatically Detecting Gait-Events Based on Foot-Marker Kinematics in Children with Cerebral Palsy – Which Markers Work Best for Which Gait Patterns? PLoS ONE. 2022;17(10). https://doi.org/10.1371/journal.pone.0275878
28. Kidziński Ł., Delp S., Schwartz M. Automatic Real-Time Gait Event Detection in Children Using Deep Neural Networks. PLoS ONE. 2019;14(1). https://doi.org/10.1371/journal.pone.0211466
29. Lempereur M., Rousseau F., Rémy-Néris O. A New Deep Learning-Based Method for the Detection of Gait Events in Children with Gait Disorders: Proof-Of-Concept and Concurrent Validity. Journal of Biomechanics. 2020;98. https://doi.org/10.1016/j.jbiomech.2019.109490
30. Leardini A., Sawacha Z., Paolini G., Ingrosso S., Nativo R., Benedetti M.G. A New Anatomically Based Protocol for Gait Analysis in Children. Gait & Posture. 2007;26(4):560–571. https://doi.org/10.1016/j.gaitpost.2006.12.018
Keywords: gait events, neural networks, recurrent neural networks, motion capture, biomechanics, cerebral palsy, foot kinematics, machine learning
For citation: Klishkovskaia T.A., Aksenov A., Bogdanov I., Nekrasova E., Shcherbakov S. Automatic detection of gait events using recurrent neural networks. Modeling, Optimization and Information Technology. 2025;13(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1942 DOI: 10.26102/2310-6018/2025.50.3.004 (In Russ).
Received 04.05.2025
Revised 06.06.2025
Accepted 26.06.2025