Keywords: network-centric control, mobile groups of cyber-physical devices, structural reliability of data transmission systems, descriptive models, destructive effects, countering destructive effects
Statistical estimation of structural reliability indicators of mobile data transmission systems
UDC 004.52.60
DOI: 10.26102/2310-6018/2025.50.3.039
The central role of the infosphere in network-centric control systems for groups of mobile cyber-physical systems determines the fundamental importance of ensuring functional reliability and survivability of information interaction systems. One of the factors of functional reliability of information interaction systems is the structural reliability of data transmission systems. The work is devoted to the construction of descriptive models of structural reliability indicators of mobile data transmission systems under the influence of destructive effects on network channels and nodes. Using the method of simulation modeling, a study was conducted on the influence of edge destruction in a random graph on network connectivity depending on the indicator – the proportion of destroyed graph nodes. The features of the average values and stability of the indicator for different characteristics of random graphs are revealed. The influence of the mobility property of cyber-physical devices in the «swarm» group on the indicators of structural reliability – complexity and unevenness of load distribution between the nodes of the data transmission system is assessed. It is shown that the use of such a resource of mobile groups of cyber-physical systems as the ability of devices to move is a way to counter destructive effects. As a result of the movement of nodes, there is an increase in the stability of structural reliability indicators – the complexity of the structure and the uneven distribution of the load between network nodes.
1. Surma I.V., Annenkov V.I., Karpov V.V., Moiseev A.V. "Setetsentricheskoe upravlenie": sovremennaya paradigma razvitiya sistem upravleniya v vooruzhennykh silakh vedushchikh derzhav mira. National Security / Nota Bene. 2014;(2):317–327. (In Russ.).
2. Shubinskii I.B. Strukturnaya nadezhnost' informatsionnykh sistem. Metody analiza. Moscow: Zhurnal Nadezhnost'; 2012. 216 p. (In Russ.).
3. Lipaev V.V. Functional Security of Software Systems. Series "Quality Management". Moscow: SYNTEG; 2004. 348 p. (In Russ.).
4. Beloglazov D.A., Gaiduk A.R., Kosenko E.Yu., et al. Gruppovoe upravlenie podvizhnymi ob"ektami v neopredelennykh sredakh. Moscow: Fizmatlit; 2015. 305 p. (In Russ.).
5. Makarenko S.I. Protivodeistvie bespilotnym letatel'nym apparatam. Saint Petersburg: Naukoemkie tekhnologii; 2020. 204 p. (In Russ.).
6. Valdez L.D., Di Muro M.A., Braunstein L.A. Failure-Recovery Model with Competition Between Failures in Complex Networks: A Dynamical Approach. Journal of Statistical Mechanics Theory and Experiment. 2016. https://doi.org/10.48550/arXiv.1606.03494
7. Borovik V.S., Gutsul V.I., Klestov S.A., et al. Kollektivy intellektual'nykh robotov. Sfery primeneniya. Tomsk: STT; 2018. 140 p. (In Russ.).
8. Timofeev A.V. Adaptivnoe upravlenie i intellektual'nyi analiz informatsionnykh potokov v komp'yuternykh setyakh. Saint Petersburg: Anatoliya; 2012. 280 p. (In Russ.).
9. Siganos G., Faloutsos M., Faloutsos P., Faloutsos C. Power Laws and the AS-Level Internet Topology. IEEE/ACM Transactions on Networking. 2003;11(4):514–524. https://doi.org/10.1109/TNET.2003.815300
10. Dovgal V.A. Integration of Networks and Computing to Build a Drone Swarm Management System as a Network Management System. Vestnik Adygeiskogo gosudarstvennogo universiteta. Seriya: Estestvenno-matematicheskie i tekhnicheskie nauki. 2022;(1):62–76. (In Russ.).
11. Kondrashov S.A. Criteria for Assessing the Quality of Data in Self-Organizing Networks. Uchenye zapiski TOGU. 2014;5(3):10–15. (In Russ.).
12. Loo J., Mauri J.L., Ortiz J.H. Mobile Ad Hoc Networks. Current Status and Future Trends. Boca Raton: CRC Press; 2012. 538 p. https://doi.org/10.1201/b11447
13. Gvozdev V., Guzairov M., Bezhaeva O., Davlieva A., Galimov R. Ensuring the Functional Safety of the Distributed Dynamic Systems Components in the Conditions of Uncertainty of the Environment Use. In: 2020 International Conference on Electrotechnical Complexes and Systems (ICOECS), 27–30 October 2020, Ufa, Russia. IEEE; 2020. P. 1–6. https://doi.org/10.1109/ICOECS50468.2020.9278464
14. Karpov V.E. Upravlenie v staticheskikh royakh. Postanovka zadachi. In: Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte: sbornik nauchnykh trudov VII-i Mezhdunarodnoi nauchno-prakticheskoi konferentsii: Volume 2, 20–22 May 2013, Kolomna, Russia. Moscow: Fizmatlit; 2013. P. 730–739. (In Russ.).
15. Li W., Bashan A., Buldyrev S.V., Stanley H.E., Havlin Sh. Cascading Failures in Interdependent Lattice Networks: The Critical Role of the Length of Dependency Links. Physical Review Letters. 2012;108. https://doi.org/10.1103/PhysRevLett.108.228702
16. Wang J., Lao S., Ruan Yi., Bai L., Hou L. Research on the Robustness of Interdependent Networks Under Localized Attack. Applied Sciences. 2017;7(6). https://doi.org/10.3390/app7060597
Keywords: network-centric control, mobile groups of cyber-physical devices, structural reliability of data transmission systems, descriptive models, destructive effects, countering destructive effects
For citation: Gvozdev V., Guzairov M., Rakipova A., Galimov R., Yanchiev D. Statistical estimation of structural reliability indicators of mobile data transmission systems. Modeling, Optimization and Information Technology. 2025;13(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1989 DOI: 10.26102/2310-6018/2025.50.3.039 (In Russ).
Received 09.06.2025
Revised 11.08.2025
Accepted 15.08.2025