Система автоматического управления движением транспортных средств в колонне
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Automatic control system for vehicle platoon movement

idChernyshev N.N., Alfara A.Y.,  idNizhenets T.V.

UDC 004.89
DOI: 10.26102/2310-6018/2025.51.4.016

  • Abstract
  • List of references
  • About authors

This article presents the development of an automatic longitudinal motion control system for vehicle platoons based on fuzzy logic methods. The relevance of the study stems from the growing need for efficient and safe solutions for freight transportation automation. The scientific novelty of the work lies in the development and verification of a control system implementing the leader – follower principle with a specialized fuzzy controller rule base, adapted for heavy-duty truck control (exemplified by the KAMAZ-65111) and implemented in software within numerical and visual modeling environments. Unlike universal approaches, the proposed rule base formalizes expert driving strategies while accounting for the control object's high inertia. The leader – follower system was implemented and tested in two distinct environments: mathematical modeling in MATLAB/Simulink and interactive 3D simulation in the Unity game engine. Comprehensive testing covered four driving scenarios: uniform motion, acceleration-braking, emergency braking, and off-road driving. Simulation results demonstrated high accuracy (distance root mean square error not exceeding 1.21 m) and safety (minimum distance exceeding 6.3 m in critical scenarios). The strong correlation of results between both platforms confirms the adequacy and robustness of the proposed model. The developed system demonstrates potential for use in autonomous vehicles and can be improved by implementing adaptive mechanisms for adjusting the fuzzy controller parameters. It is noted that the developed control system can be further improved through the use of hybrid neuro-fuzzy rules or the creation of intelligent traffic management systems.

1. Khronusova T.V., Asanov A.Z., Nazarenko M.A. On-Board Information and Control Systems That Automate the Movement of Vehicles in a Column Using the Example of Heavy Vehicles. Cybernetics and Programming. 2019;(2):30–43. (In Russ.). https://doi.org/10.25136/2306-4196.2019.2.21490

2. Solyom S., Idelchi A., Salamah B.B. Lateral Control of Vehicle Platoons. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, 13–16 October 2013, Manchester, UK. IEEE; 2013. P. 4561–4565. https://doi.org/10.1109/SMC.2013.776

3. Chernyshev N.N., Nizhenets T.V. Software Model for Processing Signals from the Electronic Floor Pedal of a Car. In: Aktual'nye problemy nauki i tekhniki: Materialy II Mezhdunarodnoj nauchno-tekhnicheskoj konferencii, posvyashchennoj 70-letiyu IMI – IzhGTU i 60-letiyu SPI (filial) FGBOU VO "IzhGTU imeni M.T. Kalashnikova", 19–21 May 2022, Sarapul, Russia. Izhevsk: Kalashnikov Izhevsk State Technical University; 2022. P. 472–476. (In Russ.).

4. Badnava S., Meskin N., Gastli A., et al. Platoon Transitional Maneuver Control System: A Review. IEEE Access. 2021;9:88327–88347. https://doi.org/10.1109/ACCESS.2021.3089615

5. Bayuwindra A., Lefeber E., Ploeg J., Nijmeijer H. Extended Look-Ahead Tracking Controller with Orientation-Error Observer for Vehicle Platooning. IEEE Transactions on Intelligent Transportation Systems. 2020;21(11):4808–4821. https://doi.org/10.1109/TITS.2019.2947348

6. Rajamani R. Vehicle Dynamics and Control. New York: Springer; 2012. 498 p. https://doi.org/10.1007/978-1-4614-1433-9

7. Lee T., Jeong Yo. A Tube-Based Model Predictive Control for Path Tracking of Autonomous Articulated Vehicle. Actuators. 2024;13(5). https://doi.org/10.3390/act13050164

8. Zhou Zh., Tao M., Qiu J., Zhang P., Xu M., Chen Ju. Autonomous Vehicle Path Tracking Using Event-Triggered MPC with Switching Model: Methodology and Real-World Validation. IET Control Theory & Applications. 2025;19(1). https://doi.org/10.1049/cth2.70046

9. Asanov A.Z., Demyanov D.N., Myshkina I.Yu. Comparative Analysis of Fuzzy Controllers in a Truck Cruise Control System. In: Information Technologies and Intelligent Decision Making Systems: Third International Scientific and Practical Conference, ITIDMS 2023, 12–14 December 2023, Moscow, Russia. Cham: Springer; 2024. P. 68–79. https://doi.org/10.1007/978-3-031-60318-1_6

10. Zhou H., Huang H., Zhang P., Shi H., Long K., Li X. Online Physical Enhanced Residual Learning for Connected Autonomous Vehicles Platoon Centralized Control. In: 2024 IEEE Intelligent Vehicles Symposium (IV), 02–05 June 2024, Jeju Island, Korea. IEEE; 2024. P. 16–22. https://doi.org/10.1109/IV55156.2024.10588534

11. Zheng Ya., Wang Q., Cao D., Fidan B., Sun Ch. Distance-Based Formation Control for Multi-Lane Autonomous Vehicle Platoons. IET Control Theory & Applications. 2021;15(11):1506–1517. https://doi.org/10.1049/cth2.12139

12. Zhao Ju., Ma X., Yang W., Li H., Wang D. Platoon Intelligence: Edge Learning in Vehicle Platooning Networks. Urban Lifeline. 2025;3(1). https://doi.org/10.1007/s44285-024-00035-y

Chernyshev Nikolay Nikolaevich
Candidate of Engineering Sciences, Docent
Email: chernyshev@mirea.ru

ORCID | eLibrary |

MIREA – Russian Technological University

Moscow, Russian Federation

Alfara Adam Yusef Ali

MIREA – Russian Technological University

Moscow, Russian Federation

Nizhenets Tatyana Vladimirovna

ORCID | eLibrary |

MIREA – Russian Technological University

Moscow, Russian Federation

Keywords: vehicle platoon, automatic control, leader – follower, fuzzy controller, MATLAB, unity, KAMAZ-65111

For citation: Chernyshev N.N., Alfara A.Y., Nizhenets T.V. Automatic control system for vehicle platoon movement. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1997 DOI: 10.26102/2310-6018/2025.51.4.016 (In Russ).

43

Full text in PDF

Received 23.06.2025

Revised 25.09.2025

Accepted 09.10.2025