Модель многокритериальной оптимизации процессов омниканального маркетинга
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

A model for multicriteria optimisation of omnichannel marketing processes

idMovsisian L.K., idSmolentseva T.E., idMovsisian L.K.

UDC 004.942
DOI: 10.26102/2310-6018/2026.52.1.012

  • Abstract
  • List of references
  • About authors

The study presents approaches to multicriteria optimization in information processes using the example of omnichannel marketing. The purpose of the article is to create and formalize a model of multicriteria optimization of information processes for managing marketing campaign resources in the context of omnichannel promotion. The methods of integrating various promotion channels to ensure a consistent customer experience and improve the effectiveness of marketing campaigns are considered. A conceptual model has been developed that takes into account a variety of campaigns, channels, stages of the customer journey and key performance indicators (KPIs). The influence of synergetic effects and resource constraints on strategic planning is analyzed. The results of constructing a mathematical model that allows to increase the marketing effect and reduce financial costs are presented. The structure of the mathematical model of multicriteria optimization is described. The presentation of a marketing campaign in the context of a mathematical model is considered. A diagram of the interaction of the considered subsets is considered. The results obtained in assessing the effectiveness of the model in real conditions demonstrate the prospects for increasing the profitability of marketing strategies, taking into account current constraints. The application context, key metrics, and evaluation methods are described. Recommendations on the implementation of the model in the activities of enterprises for optimizing information management processes of omnichannel campaigns are proposed. The prospects of applying the results obtained in further research are presented, in which the described mathematical model of multicriteria optimization, along with the method of processing and annotating marketing information, will serve as the basis for the functioning of an automated decision support information system in the field of omnichannel marketing.

1. Movsisyan L.K., Nizhegorodov K.S., Kuznetsova K.A., Movsisyan L.K. The model of intellectual support for managerial decision-making in the field of internet marketing. Vestnik Voronezhskogo instituta FSIN Rossii. 2024;(1):101–108. (In Russ.).

2. Movsisyan L.K., Smolentseva T.E., Kalach A.V. Podderzhka prinyatiya reshenii v protsessakh upravleniya organizatsionnymi sistemami. In: Aktual'nye problemy prikladnoi matematiki, informatiki i mekhaniki: sbornik trudov Mezhdunarodnoi nauchnoi konferentsii, 04–06 December 2023, Voronezh, Russia. Voronezh: Nauchno-issledovatel'skie publikatsii; 2024. P. 1583–1588. (In Russ.).

3. Bronnikov M.A. Application of artificial intelligence in marketing. Ekonomika i sotsium. 2022;(6-1):449–453. (In Russ.).

4. Ivanchenko O.V. Data mining and business analytics in business management and marketing. Vestnik of Rostov State University of Economics (RINH). 2022;(4):125–130. (In Russ.). https://doi.org/10.54220/v.rsue.1991-0533.2023.80.4.018

5. Raisch S., Fomina K. Combining Human and Artificial Intelligence: Hybrid Problem-Solving in Organizations. Academy of Management Review. 2024;50(2). https://doi.org/10.5465/amr.2021.0421

6. Bala M., Verma D. A Critical Review of Digital Marketing. International Journal of Management, IT & Engineering. 2018;8(10):321–339.

7. Quinn L., Dibb S., Simkin L., Canhoto A.I., Analogbei M. Troubled waters: the transformation of marketing in a digital world. European Journal of Marketing. 2016;50(12):2103–2133.

8. Petit O., Velasco C., Spence Ch. Digital Sensory Marketing: Integrating New Technologies into Multisensory Online Experience. Journal of Interactive Marketing. 2019;45(C):42–61. https://doi.org/10.1016/j.intmar.2018.07.004

9. Movsisian L.K., Smolentseva T.E. Application of Intelligent Decision-Making Support Model in the Processes of Omnichannel Marketing. In: 2024 International Russian Smart Industry Conference (SmartIndustryCon), 25–29 March 2024, Sochi, Russia. IEEE; 2024. P. 676–681. https://doi.org/10.1109/SmartIndustryCon61328.2024.10515670

10. Kumar V. Evolution of Marketing as a Discipline: What Has Happened and What to Look Out For. Journal of Marketing. 2015;79(1):1–9. https://doi.org/10.1509/jm.79.1.1

11. Novikov D.A. Teorija upravlenija organizacionnymi sistemami. Moscow: Lenand; 2022. 500 p. (In Russ.).

12. Movsisian L.K., Kalach A.V. Application of the financial mechanism in the decision support system in the organization for omni-channel promotion of goods and services. Vestnik Voronezhskogo instituta FSIN Rossii. 2023;(3):129–134. (In Russ.).

13. Lukina O.V., Kurochkina A.A., Nazarov P.V. Omnicanal marketing as a tool for the development of small and medium businesses in the trade industry. Proceedings of the International Banking Institute. 2021;(1):75–84. (In Russ.).

14. Timoumi A., Gangwar M., Mantrala M.K. Cross-Channel Effects of Omnichannel Retail Marketing Strategies: A Review of Extant Data-Driven Research. Journal of Retailing. 2022;98(1). https://doi.org/10.1016/j.jretai.2022.02.008

15. Wedel M., Kannan P.K. Marketing Analytics for Data-Rich Environments. Journal of Marketing. 2016;80(6):97–121. https://doi.org/10.1509/jm.15.0413

16. Trom L., Cronje J. Analysis of Data Governance Implications on Big Data. In: Advances in Information and Communication: Proceedings of the 2019 Future of Information and Communication Conference (FICC): Volume 1, 14–15 March 2019, San Francisco, CA, USA. Cham: Springer; 2020. P. 645–654. https://doi.org/10.1007/978-3-030-12388-8_45

17. Mathes Ch.A. Big Data Has Unique Needs for Information Governance and Data Quality. Journal of Management Science and Business Intelligence. 2016;1(1):12–20. https://doi.org/10.5281/zenodo.376753

18. Chintagunta P., Hanssens D.M., Hauser J.R. Editorial-Marketing Science and Big Data. Marketing Science. 2016;35(3):341–342. https://doi.org/10.1287/mksc.2016.0996

Movsisian Leon Karenovich

ORCID |

MIREA – Russian Technological University

Moscow, Russian Federation

Smolentseva Tatyana Evgenievna
Doctor of Engineering Sciences

ORCID |

MIREA – Russian Technological University

Moscow, Russian Federation

Movsisian Lina Karenovna

ORCID |

Russian Academy of National Economy and Public Administration under the President of the Russian Federation

Moscow, Russian Federation

Keywords: optimization model of information processes, digital marketing, omnichannel approach, information system, MCDM, big data, artificial intelligence, KPI

For citation: Movsisian L.K., Smolentseva T.E., Movsisian L.K. A model for multicriteria optimisation of omnichannel marketing processes. Modeling, Optimization and Information Technology. 2026;14(1). URL: https://moitvivt.ru/ru/journal/pdf?id=2022 DOI: 10.26102/2310-6018/2026.52.1.012 (In Russ).

26

Full text in PDF

Received 17.07.2025

Revised 30.01.2026

Accepted 03.02.2026

Published 31.01.2026