Применение глубокого обучения с подходом «один против всех» для задачи многоклассовой классификации дефектов металлических поверхностей
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Application of deep learning with the one-vs-all approach for the task of multiclass classification of metal surface defects

idSosnovskaya V.E., idGavrilova A.D., idVolkova E.A., idKotilevets I.D., idIlin D.Y.

UDC 004.8
DOI: 10.26102/2310-6018/2025.51.4.025

  • Abstract
  • List of references
  • About authors

The article investigates the problem of multiclass classification of metal surface defects using deep learning methods. The primary approach employs a "one-vs-all" strategy, which effectively separates different defect classes. Initial analysis utilized the NEU dataset, comprising six defect categories. The resulting metrics were compared against existing solutions, after which the dataset was extended with an additional class from the "Severstal: Steel Defect Detection" dataset. Two convolutional neural network architectures were proposed, each tailored to the respective set of classes. The first architecture consists of five convolutional layers, five max-pooling layers, and two fully connected layers. The second architecture includes two additional layers: an extra convolutional layer and an additional max-pooling layer. Evaluation on the NEU dataset demonstrated high performance: the final model achieved an accuracy of 98.33 %, precision of 98.39 %, recall of 98.33 %, and an F1-score of 98.33 %. Analysis of the results showed that the proposed approach achieves performance comparable to other research results, and the proposed architectures are on par with state-of-the-art solutions. The model also exhibits good processing speed – up to 103 frames per second on the CPU – making it suitable for industrial deployment and enabling real-time defect detection. After extending the solution with the additional class, the model maintained strong performance, achieving an accuracy of 97.14 %, precision of 97.24 %, recall of 97.14 %, and an F1-score of 97.12 %, which suggests robustness and scalability of the proposed solution based on the "one-vs-all" approach.

1. Lee S.Yo., Tama B.A., Moon S.Ju., Lee S. Steel Surface Defect Diagnostics Using Deep Convolutional Neural Network and Class Activation Map. Applied Sciences. 2019;9(24). https://doi.org/10.3390/app9245449

2. Yunani J.L., Medvedev M.V., Kirpitchnikov A.P. Classifying Steel Defects Using Transfer Learning. Herald of Technological University. 2019;22(7):174–178. (In Russ.).

3. Fu G., Zhang Z., Le W., et al. A Multi-Scale Pooling Convolutional Neural Network for Accurate Steel Surface Defects Classification. Frontiers in Neurorobotics. 2023;17. https://doi.org/10.3389/fnbot.2023.1096083

4. Han O.C., Kutbay U. Detection of Defects on Metal Surfaces Based on Deep Learning. Applied Sciences. 2025;15(3). https://doi.org/10.3390/app15031406

5. Ayon S.T.K., Siraj F.M., Uddin J. Steel Surface Defect Detection Using Learnable Memory Vision Transformer. Computers, Materials & Continua. 2025;82(1):499–520. https://doi.org/10.32604/cmc.2025.058361

6. Wang Sh., Xia X., Ye L., Yang B. Automatic Detection and Classification of Steel Surface Defect Using Deep Convolutional Neural Networks. Metals. 2021;11(3). https://doi.org/10.3390/met11030388

7. Luo Q., Fang X., Su J., et al. Automated Visual Defect Classification for Flat Steel Surface: A Survey. IEEE Transactions on Instrumentation and Measurement. 2020;69(12):9329–9349. https://doi.org/10.1109/TIM.2020.3030167

8. Li Q., Luo Zh., Chen H., Li Ch. An Overview of Deeply Optimized Convolutional Neural Networks and Research in Surface Defect Classification of Workpieces. IEEE Access. 2022;10:26443–26462. https://doi.org/10.1109/ACCESS.2022.3157293

9. Prihatno A.T., Utama I.B.K.Yo., Kim Ju.Yo., Jang Y.M. Metal Defect Classification Using Deep Learning. In: Proceedings of the 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), 17–20 August 2021, Jeju Island, Korea. IEEE; 2021. P. 389–393. https://doi.org/10.1109/ICUFN49451.2021.9528702

10. Konovalenko I., Maruschak P., Brezinová J., Viňáš J., Brezina J. Steel Surface Defect Classification Using Deep Residual Neural Network. Metals. 2020;10(6). https://doi.org/10.3390/met10060846

11. Konovalenko I.V., Maruschak P.O. Classification of the Surface Technological Defects in Rolled Metal Products with the Help of a Deep Neural Network. Materials Science. 2021;56(6):779–788. https://doi.org/10.1007/s11003-021-00495-5

12. Zhu P., Dai Ju., Chang H., Xu Ya., Zhang Zh. DenseNet Network-Based Surface Defect Detection Algorithm for Strip Steel. International Journal of Frontiers in Engineering Technology. 2022;4(10):34–40. https://doi.org/10.25236/IJFET.2022.041006

13. Chaudhry N.Ja., Khan M.B., Iqbal M.Ja., Yasir S.M. Modeling & Evaluating the Performance of Convolutional Neural Networks for Classifying Steel Surface Defects. Journal of Artificial Intelligence. 2022;4(4):245–259. https://doi.org/10.32604/jai.2022.038875

14. Mamun A.M.A., Hossain R., Sharmin M.M. Detection and Classification of Metal Surface Defects Using Lite Convolutional Neural Network (LCNN). Material Science & Engineering International Journal. 2024;8(3):72–75.

15. Dabkowski P., Gal Ya. Real Time Image Saliency for Black Box Classifiers. In: NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 04–09 December 2017, Long Beach, CA, USA. New York: Curran Associates, Inc.; 2017. P. 6967–6976.

Sosnovskaya Vladislava Evgenievna

Email: vlada.sosnovskaya@gmail.com

ORCID |

MIREA – Russian Technological University

Moscow, Russian Federation

Gavrilova Alla Dmitrievna

Email: gavrilowaa2004@gmail.com

ORCID |

MIREA – Russian Technological University

Moscow, Russian Federation

Volkova Elizaveta Alekseevna

Email: lizabat15@gmail.com

ORCID |

MIREA – Russian Technological University

Moscow, Russian Federation

Kotilevets Igor Denisovich

Email: ikotilevets@gmail.com

Scopus | ORCID | eLibrary |

MIREA – Russian Technological University

Moscow, Russian Federation

Ilin Dmitry Yurievich
Candidate of Engineering Sciences
Email: i@dmitryilin.com

WoS | Scopus | ORCID | eLibrary |

MIREA – Russian Technological University

Moscow, Russian Federation

Keywords: neural networks, convolutional neural networks, dataset, classification, defects of metal surfaces, deep learning

For citation: Sosnovskaya V.E., Gavrilova A.D., Volkova E.A., Kotilevets I.D., Ilin D.Y. Application of deep learning with the one-vs-all approach for the task of multiclass classification of metal surface defects. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2032 DOI: 10.26102/2310-6018/2025.51.4.025 (In Russ).

105

Full text in PDF

Received 18.07.2025

Revised 12.10.2025

Accepted 22.10.2025