Разработка прототипа системы компьютерной автоматизированной диагностики с использованием платформы 3D Slicer
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Development of a prototype of a computer-aided diagnostic system using 3D Slicer

idKruzhalov A.S.

UDC 004.514
DOI: 10.26102/2310-6018/2025.51.4.017

  • Abstract
  • List of references
  • About authors

The article is devoted to the development of a prototype of a computer-aided diagnostics system for recognizing cerebral aneurysms using the 3D Slicer platform. The relevance of the work is due to the growing workload of specialists involved in the interpretation of medical images, which requires automation of diagnostic processes to improve the quality of medical care. The importance of prototyping computer-aided diagnostic systems at the initial stages of work on the system is determined by the need to test the concept of the system and the algorithms used, identify potential problems and improve interaction between technical specialists and experts in the field of medicine. The article describes key aspects of the development, including the use of open libraries and plugins, as well as the application of design patterns to increase the flexibility and modularity of the code. The main focus is on the design of the system, including the software architecture, the choice of technologies used and the implementation of key components. The prototype of the system allows the user to select images and recognition models, as well as build 3D visualizations of the highlighted areas. The results of the work demonstrate the effectiveness of the proposed approach, as well as the possibilities of subsequent integration of the developed prototype with medical information systems and picture archiving and communication systems (PACS).

1. Osipov L.V., Dolgushin M.B., Mikhaylov A.I., et al. Looking Inside Man: Medical Imaging. Bulletin of Russian State Medical University. 2016;(4):4–13.

2. Kikinis R., Pieper S.D., Vosburgh K.G. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. In: Intraoperative Imaging and Image-Guided Therapy. New York: Springer; 2014. P. 277–289. https://doi.org/10.1007/978-1-4614-7657-3_19

3. Nolden M., Zelzer S., Seitel A., et al. The Medical Imaging Interaction Toolkit: Challenges and Advances. International Journal of Computer Assisted Radiology and Surgery. 2013;8(4):607–620. https://doi.org/10.1007/s11548-013-0840-8

4. McCormick M., Liu X., Jomier Ju., Marion Ch., Ibanez L. ITK: Enabling Reproducible Research and Open Science. Frontiers in Neuroinformatics. 2014;8. https://doi.org/10.3389/fninf.2014.00013

5. Schroeder W., Martin K., Lorensen B. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware; 2006. 512 p.

6. Martin R.C. Clean Architecture: А Craftsman's Guide tо Software Structure and Design. Saint Petersburg: Piter; 2022. 352 p. (In Russ.).

7. Ronneberger O., Fischer Ph., Brox Th. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: Proceedings: Part III: 18th International Conference, 05–09 October 2015, Munich, Germany. Cham: Springer; 2015. P. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

8. Kruzhalov A.S. Patch-Based Training of a Convolutional Neural Network in the Problem of Cerebral Aneurysms Recognition. Modeling, Optimization and Information Technology. 2023;11(2). (In Russ.). https://doi.org/10.26102/2310-6018/2023.41.2.017

9. Kruzhalov A.S., Filippovich A.Yu. Osobennosti primeneniya svertochnykh neironnykh setei dlya raspoznavaniya anevrizm sosudov golovnogo mozga. In: Matematicheskie metody raspoznavaniya obrazov: Tezisy dokladov 21-i Vserossiiskoi konferentsii s mezhdunarodnym uchastiem, 12–15 December 2023, Moscow, Russia. Moscow: Russian Academy of Sciences; 2023. P. 192–194. (In Russ.).

10. Paszke A., Gross S., Massa F., et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, 08–14 December 2019, Vancouver, BC, Canada. New York: Curran Associates, Inc.; 2019. P. 8026–8037.

11. Pérez-García F., Sparks R., Ourselin S. TorchIO: A Python Library for Efficient Loading, Preprocessing, Augmentation and Patch-Based Sampling of Medical Images in Deep Learning. Computer Methods and Programs in Biomedicine. 2021;208. https://doi.org/10.1016/j.cmpb.2021.106236

12. Harris Ch.R., Millman K.J., van der Walt S.J., et al. Array Programming with NumPy. Nature. 2020;585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2

13. Van der Walt S., Schönberger J.L., Nunez-Iglesias Ju., et al. scikit-image: Image Processing in Python. PeerJ. 2014;2. https://doi.org/10.7717/peerj.453

14. Yaniv Z., Lowekamp B.C., Johnson H.J., Beare R. SimpleITK Image-Analysis Notebooks: A Collaborative Environment for Education and Reproducible Research. Journal of Digital Imaging. 2018;31(3):290–303. https://doi.org/10.1007/s10278-017-0037-8

Kruzhalov Alexey Sergeevich

ORCID |

Moscow Polytechnic University

Moscow, Russian Federation

Keywords: computer-aided diagnostics system, software prototyping, medical imaging, 3D Slicer, artificial intelligence in medicine

For citation: Kruzhalov A.S. Development of a prototype of a computer-aided diagnostic system using 3D Slicer. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2037 DOI: 10.26102/2310-6018/2025.51.4.017 (In Russ).

6

Full text in PDF

Received 13.08.2025

Revised 30.09.2025

Accepted 13.10.2025