Ресурсно-ориентированная технология организации информационного процесса распределения вычислительных ресурсов при интеграции концепций Интернета вещей и краевых вычислений
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Resource-aware technology of resource allocation informational process organizing in integrated Internet of things and edge computing concepts

idKlimenko A.B.

UDC 519.687+004.023
DOI: 10.26102/2310-6018/2025.50.3.045

  • Abstract
  • List of references
  • About authors

The article is devoted to the development of a resource-oriented technology for organizing an information process of computational resource distribution under conditions of integrating the concepts of the Internet of Things (IoT) and edge computing. During the research, an analysis of existing models and methods was conducted and their shortcomings were identified, namely: the lack of consideration of the resource cost of data transit for computing nodes involved in data transmission and the computing process and the lack of consideration of the resource costs required for the operation of distributing computing resources. Given the limited resources of devices at the network edge, these drawbacks are particularly relevant. The goal of this study is to minimize resource consumption during resource distribution and solving computational tasks within systems constrained by device limitations. The foundation of the proposed technology includes: an overall mathematical model of resouce allocation process, formulated as an optimization problem; proposed methods for solving said problem based on heuristic rules and meta-heuristics; algorithms for calculating the resource cost of data transit and migration of computational tasks, which serve auxiliary purposes within the developed methods; a repository of meta-heuristic algorithms used to select the optimal method for solving the resource distribution problem. This technology implements the distribution of computational resources while minimizing resource expenses associated with data transit, taking into account both the computational task itself and decision-making regarding resource allocation. It considers the resource constraints of devices and dynamic changes in load and network topology. Experimental modeling confirmed the effectiveness of applying the proposed technology. Significant reductions in resource expenditure for computational resource distribution have been demonstrated, leading to improved results in terms of distributed computing efficiency metrics. The results of the study demonstrate the potential of the proposed technology for organizing distributed computing in systems with limited resources, such as IoT systems and edge computing.

1. Ou W., Feng D., Luo K., Chen X. Eco-SLAM: Resource-Efficient Edge-Assisted Collaborative Visual SLAM System. In: Algorithms and Architectures for Parallel Processing: 23rd International Conference, ICA3PP 2023: Proceedings: Part IV, 20–22 October 2023, Tianjin, China. Singapore: Springer; 2024. P. 307–324. https://doi.org/10.1007/978-981-97-0859-8_19

2. Li B., Shan H. Offloading Revenue Maximization in Multi-UAV-Assisted Mobile Edge Computing for Video Stream. IEEE Internet of Things Journal. 2025;12(8):10866–10875. https://doi.org/10.1109/JIOT.2024.3513409

3. Irlon I., Muryanto T., Alvionita A. IoT Security Model with Machine Learning and Edge Computing for Smart Poultry Farm. Interdisciplinary Social Studies. 2025;4(3):334–340. https://doi.org/10.55324/iss.v4i3.876

4. Sekaran R., Patan R., Al-Turjman F. A Novel Approach for Efficient Packet Transmission in Volunteered Computing MANET. ACM Transactions on Internet Technology. 2021;21(4). https://doi.org/10.1145/3418203

5. Bartolini N., Coletta A., Maselli G., Prata M. TaMaRA: A Task Management and Routing Algorithm for FANETs. IEEE Transactions on Mobile Computing. 2024;23(5):4930–4942. https://doi.org/10.1109/TMC.2023.3300746

6. Goel S., Mikek B., Aly J., Arun V., Saeed A., Akella A. A Performance Verification Methodology for Resource Allocation Heuristics. arXiv. URL: https://arxiv.org/abs/2301.04205 [Accessed 5th June 2025].

7. Buss G., Lee K., Veit D. Scalable Grid Resource Allocation for Scientific Workflows Using Hybrid Metaheuristics. In: Advances in Grid and Pervasive Computing: 5th International Conference, CPC 2010: Proceedings, 10–13 May 2010, Hualien, Taiwan. Berlin, Heidelberg: Springer; 2010. P. 256–267. https://doi.org/10.1007/978-3-642-13067-0_29

8. Taleb I., Guillaume J.-L., Duthil B. A Survey on Services Placement Algorithms in Integrated Cloud-Fog / Edge Computing. ACM Computing Surveys. 2025;57(11). https://doi.org/10.1145/3729214

9. Harjula E., Artemenko A., Forsström S. Edge Computing for Industrial IoT: Challenges and Solutions. In: Wireless Networks and Industrial IoT: Applications, Challenges and Enablers. Cham: Springer; 2021. P. 225–240. https://doi.org/10.1007/978-3-030-51473-0_12

10. Barskii A.B. Parallel'nye protsessy v vychislitel'nykh sistemakh. Planirovanie i organizatsiya. Moscow: Radio i svyaz'; 1990. 256 p. (In Russ.).

11. Toporkov V.V. Modeli raspredelennykh vychislenii. Moscow: Fizmatlit; 2004. 320 p. (In Russ.).

Klimenko Anna Borisovna
Candidate of Engineering Sciences
Email: anna_klimenko@mail.ru

ORCID |

Russian State University for Humanities

Moscow, Russian Federation

Keywords: computing resource allocation, distributed computing, technology, resource costs optimization, distributed computing modelling

For citation: Klimenko A.B. Resource-aware technology of resource allocation informational process organizing in integrated Internet of things and edge computing concepts. Modeling, Optimization and Information Technology. 2025;13(3). URL: https://moitvivt.ru/ru/journal/pdf?id=2038 DOI: 10.26102/2310-6018/2025.50.3.045 (In Russ).

29

Full text in PDF

Received 28.07.2025

Revised 26.08.2025

Accepted 08.09.2025