Разработка и исследование алгоритмов генерации данных на основе математического ремоделирования
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Development and research of data generation algorithms based on mathematical remodelling

idTyurin A.S., idSaraev P.V.

UDC 519.6
DOI: 10.26102/2310-6018/2025.51.4.037

  • Abstract
  • List of references
  • About authors

Mathematical remodeling is a modern approach in the field of mathematical modeling, the essence of which is the transformation of an existing model of one class into a new model belonging to a different, often simpler or computationally more efficient class. Unlike the classical modeling process, where a model is created "from scratch" based on primary data, remodeling starts from the premise that there already exists some adequate initial model f1 that describes an object or process accurately enough. However, this model may be too complex for practical application, require significant computational resources, or be presented in a form that is inconvenient for further use, for example, in real-time systems or on devices with limited performance. The key task in the remodeling process is the generation of a representative training dataset on which the new model f2 will be built. The accuracy and adequacy of the newly obtained model directly depend on the quality and structure of this synthesized dataset. Traditional generation methods, such as uniform random distribution of points in a given domain or using design of experiments methods, often prove to be ineffective: they either do not account for the behavioral features of the original function or become computationally infeasible in high-dimensional problems. Consequently, there is a need to develop intelligent algorithms for adaptive data generation that could purposefully place points in those regions of the input variable space where the original function f1 demonstrates the greatest variability and nonlinearity. This work is devoted to the development and research of precisely such an approach, based on the principles of interval analysis and sequential bisection of the domain. This allows for the optimal distribution of a limited volume of generated data and significantly improves the accuracy of mathematical remodeling.

1. Saraev P.V., Blyumin S.L., Galkin A.V. Neural and Neuro-Fuzzy Modelling in Control of Metallurgical Processes. In: Sovremennye problemy gorno-metallurgicheskogo kompleksa. Nauka i proizvodstvo: Materialy XIII Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, 23–25 November 2016, Stary Oskol, Russia. Stary Oskol: National University of Science and Technology "MISIS"; 2016. P. 102–105. (In Russ.).

2. Huang Ch., Radi B., Hami A.E. Uncertainty Analysis of Deep Drawing Using Surrogate Model Based Probabilistic Method. The International Journal of Advanced Manufacturing Technology. 2016;86(9):3229–3240. https://doi.org/10.1007/s00170-016-8436-4

3. Jansson T., Nilsson L., Redhe M. Using Surrogate Models and Response Surfaces in Structural Optimization – With Application to Crashworthiness Design and Sheet Metal Forming. Structural and Multidisciplinary Optimization. 2003;25(2):129–140. https://doi.org/10.1007/s00158-002-0279-y

4. Burnaev E., Grihon S. Construction of the Metamodels in Support of Stiffened Panel Optimization. In: Proceedings of the VI International Conference on Mathematical Methods in Reliability: Theory. Methods. Applications, 22–29 June 2009, Moscow, Russia. Moscow: PFUR; 2009. P. 124–128.

5. Zhao D., Xue D. A Multi-Surrogate Approximation Method for Metamodeling. Engineering with Computers. 2011;27(2):139–153. https://doi.org/10.1007/s00366-009-0173-y

6. Saraev P. Conception of Mathematical Remodeling. In: Nano-bio-tekhnologii. Teploenergetika. Matematicheskoe modelirovanie, 27–28 February 2024, Lipetsk, Russia. Lipetsk: Lipetsk State Technical University; 2024. P. 150–154. (In Russ.).

7. Mienye I.D., Sun Y. A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access. 2022;10:99129–99149. https://doi.org/10.1109/ACCESS.2022.3207287

8. Kunapuli G. Ensemble Methods for Machine Learning. Shelter Island: Manning Publications Co.; 2023. 352 p.

9. Jaulin L., Kieffer M., Didrit O., Walter E. Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Moscow, Izhevsk: Institut komp'yuternykh issledovanii; 2019. 468 p. (In Russ.).

10. Hansen E.R., Walster G.W. Global Optimization Using Interval Analysis. New York: Marcel Dekker; 2004. 489 p.

Tyurin Alexey Sergeevitch

ORCID |

Lipetsk State Technical University

Lipetsk, Russian Federation

Saraev Pavel Viktorovitch
Doctor of Engineering Sciences

ORCID |

Lipetsk State Technical University

Lipetsk, Russian Federation

Keywords: mathematical modeling, remodeling, data generation, interval analysis, numerical methods

For citation: Tyurin A.S., Saraev P.V. Development and research of data generation algorithms based on mathematical remodelling. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2058 DOI: 10.26102/2310-6018/2025.51.4.037 (In Russ).

6

Full text in PDF

Received 28.08.2025

Revised 07.11.2025

Accepted 12.11.2025