Оценка эффективности центров мониторинга и реагирования на киберугрозы: ограничения временных метрик и операционные индикаторы качества
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Evaluating the effectiveness of cyber‑threat monitoring and response centers: limits of time‑based metrics and operational quality indicators

Pakhomov V.V. 

UDC 004.056.55
DOI: 10.26102/2310-6018/2025.51.4.040

  • Abstract
  • List of references
  • About authors

The paper examines practices for evaluating the effectiveness of cyber‑threat monitoring and response centers under growing telemetry volumes and increasingly complex attacks. It is shown that commonly used indicators such as mean time to detect and mean time to respond mainly capture speed while failing to assess whether available data are sufficient for sound conclusions, whether investigation context is present, and whether investigation steps are reproducible. The study compares international guidance and landscape reports with Russian regulatory requirements and analyzes industry publications. As a result, data sources used by monitoring centers are systematized, typical bottlenecks in the data value chain are identified, and limitations of classic time‑based metrics are highlighted. A simple three‑axis comparison framework is proposed: speed, context, and process. The contribution introduces three computable indicators: context completeness (share of incidents corroborated by at least three independent sources), investigation reproducibility (share of steps executed via approved playbooks with machine‑readable logging), and resilience to peak loads (comparison of service‑level target adherence in peak versus baseline periods), together with an integral manageability index combining speed, accuracy, and completeness. The practical value lies in the feasibility of calculating these indicators using existing security event management systems and incorporating them into monitoring dashboards for audit, resource planning, and cross‑team comparability.

1. Shablovskii Ya.K., Gel'fand A.M. Obzor tekhnologii SOC (Security Operations Center). Innovatsii. Nauka. Obrazovani. 2021;(33):1316–1321. (In Russ.).

2. Kuznetsov A.V. The Organization of Separate Security Event Data Storage. Voprosy kiberbezopasnosti. 2024;(2):22–28. (In Russ.). https://doi.org/10.21681/2311-3456-2024-2-22-28

3. Forsberg J., Frantti T. Technical Performance Metrics of a Security Operations Center. Computers & Security. 2023;135. https://doi.org/10.1016/j.cose.2023.103529

4. Agyepong E., Cherdantseva Yu., Reinecke Ph., Burnap P. A Systematic Method for Measuring the Performance of a Cyber Security Operations Centre Analyst. Computers & Security. 2023;124. https://doi.org/10.1016/j.cose.2022.102959

5. Shilova A.D. Criterion of the Network Infrastructure Security. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2023;23(3):530–537. (In Russ.). https://doi.org/10.17586/2226-1494-2023-23-3-530-537

6. Bridges R.A., Rice A.E., Oesch S., et al. Testing SOAR Tools in Use. Computers & Security. 2023;129. https://doi.org/10.1016/j.cose.2023.103201

7. Islam M.A. Application of Artificial Intelligence and Machine Learning in a Security Operations Center. Issues in Information Systems. 2023;24(4):311–327. https://doi.org/10.48009/4_iis_2023_124

8. González-Granadillo G., González-Zarzosa S., Diaz R. Security Information and Event Management (SIEM): Analysis, Trends, and Usage in Critical Infrastructures. Sensors. 2021;21(14). https://doi.org/10.3390/s21144759

9. Shaked A., Cherdantseva Yu., Burnap P., Maynard P. Operations-Informed Incident Response Playbooks. Computers & Security. 2023;134. https://doi.org/10.1016/j.cose.2023.103454

10. Fedorchenko A., Levshun D., Chechulin A., Kotenko I. An Analysis of Security Event Correlation Techniques in SIEM-Systems. Part 1. SPIIRAS Proceedings. 2016;(4):5–27. (In Russ.). https://doi.org/10.15622/sp.47.1

11. Fedorchenko A., Levshun D., Chechulin A., Kotenko I. An Analysis of Security Event Correlation Techniques in SIEM-Systems. Part 2. SPIIRAS Proceedings. 2016;(6):208–225. (In Russ.). https://doi.org/10.15622/sp.49.11

12. Mahboubi A., Luong Kh., Aboutorab H., et al. Evolving Techniques in Cyber Threat Hunting: A Systematic Review. Journal of Network and Computer Applications. 2024;232. https://doi.org/10.1016/j.jnca.2024.104004

13. Afanaseva S.V., Kuzmina U.V. Main Problems Working with Security Operation Center. Journal of the Ural Federal District. Information Security. 2023;(1):51–58. (In Russ.). https://doi.org/10.14529/secur230105

14. Feng W., Cao Yu, Chen Y. Multi-Granularity User Anomalous Behavior Detection. Applied Sciences. 2025;15(1). https://doi.org/10.3390/app15010128

Pakhomov Valeriy Vladislavovich

The Russian Presidential Academy of National Economy and Public Administration

Moscow, Russian Federation

Keywords: SOC, effectiveness assessment, MTTD, MTTR, context completeness, investigation reproducibility, load resilience, SIEM, SOAR, XDR

For citation: Pakhomov V.V. Evaluating the effectiveness of cyber‑threat monitoring and response centers: limits of time‑based metrics and operational quality indicators. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2092 DOI: 10.26102/2310-6018/2025.51.4.040 (In Russ).

39

Full text in PDF

Received 11.10.2025

Revised 07.11.2025

Accepted 17.11.2025