Разработка и анализ облачных моделей для адаптивного управления роевыми системами беспилотного транспорта
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Development and analysis of cloud models for adaptive control of unmanned vehicle swarm systems

Krepyshev D.A.,  Izbitskaya E.Y. 

UDC 004.75:519
DOI: 10.26102/2310-6018/2026.52.1.007

  • Abstract
  • List of references
  • About authors

This article examines the problem of managing swarm systems of unmanned aerial vehicles in dynamically changing environments. To address this problem, a cloud-based mathematical model based on decentralized swarm intelligence algorithms is proposed and verified. It provides adaptive control, self-organization, and stability for a unmanned aerial vehicles group. The methodological basis of the approach is the integration of two key components: a deterministic router-rotor model for guaranteed coverage of the target zone and k-fault-tolerant gossip protocols built on Knödel graphs for reliable data exchange under conditions of unstable communication and node loss. The model was implemented on the OpenStack cloud platform, ensuring deployment flexibility and scalability of computing resources. Simulation modeling included a comparative analysis with the classical Q-Routing algorithm for various operating scenarios, including normal operation and dynamic network reconfiguration. The results demonstrated the comprehensive effectiveness of the proposed architecture. The developed solution demonstrated significantly lower and more predictable latency, high and stable throughput under increasing load, and optimal utilization of compute node memory. A critical advantage was increased system survivability, resulting in shorter recovery times after failures. The results confirm that the combination of deterministic and gossip mechanisms in a cloud environment enables the creation of highly reliable and scalable systems for monitoring and data collection tasks that require stringent real-time performance and fault tolerance.

1. Selin A.I., Turkin I.K. Review of target objects for the group-operated unmanned aerial vehicles application. Civil Aviation High Technologies. 2023;26(2):91–105. (In Russ.). https://doi.org/10.26467/2079-0619-2023-26-2-91-105

2. Dovgal V.A., Dovgal D.V. Analysis of communication interaction systems for drones performing a search mission as part of a group. Vestnik Adygeiskogo gosudarstvennogo universiteta. Seriya: Estestvenno-matematicheskie i tekhnicheskie nauki. 2020;(4):87–94. (In Russ.).

3. Kostyukov V.A., Medvedev I.M., Medvedev M.Yu., Pshikhopov V.Kh. Simulation of Swarm Algorithms for Path Planning in a Two-Dimensional Non-Mapped Environment. Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics. 2024;16(2):26–40. (In Russ.). https://doi.org/10.14529/mmph240203

4. Taranov A.Yu., Ostroukhov A.Yu. Increasing energy efficiency in area-based tasks resolving by an autonomous robots swarm through relay communications. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2023;(11):65–70. (In Russ.).

5. Sukonshchikov A.A., Shvetsov A.N., Andrianov I.A., Kochkin D.V. Principles of building self-organizing information and telecommunication systems. Cherepovets State University Bulletin. 2021;(1):56–67. (In Russ.). https://doi.org/10.23859/1994-0637-2021-1-100-4

6. Karsaev O.V. Simulation of a small satellites group autonomous control. Izvestiya SFedU. Engineering Sciences. 2018;(1):140–154. (In Russ.). https://doi.org/10.23683/2311-3103-2018-1-140-154

7. Dovgal V.A. Integration of networks and computing to build a drone swarm management system as a network management system. Vestnik Adygeiskogo gosudarstvennogo universiteta. Seriya: Estestvenno-matematicheskie i tekhnicheskie nauki. 2022;(1):62–76. (In Russ.).

8. Ivanov D. Distribution of roles in coalitions of robots with limited communications based on the swarm interaction. Large-Scale Systems Control. 2019;(78):23–45. (In Russ.).

9. Zhou Y., Rao B., Wang W. UAV Swarm Intelligence: Recent Advances and Future Trends. IEEE Access. 2020;8:183856–183878. https://doi.org/10.1109/ACCESS.2020.3028865

10. Sharma A., Vanjani P., Paliwal N., et al. Communication and networking technologies for UAVs: A survey. Journal of Network and Computer Applications. 2020;168. https://doi.org/10.1016/j.jnca.2020.102739

Krepyshev Dmitry Alexandrovich
Candidate of Economic Sciences

Kuban State Agrarian University named after I.T. Trubilin

Krasnodar, Russian Federation

Izbitskaya Ekaterina Yurievna

Kuban State Agrarian University named after I.T. Trubilin

Krasnodar, Russian Federation

Keywords: UAV swarms, self-organization, cloud computing, swarm intelligence, gossip protocols, openStack, management, adaptability, graph models

For citation: Krepyshev D.A., Izbitskaya E.Y. Development and analysis of cloud models for adaptive control of unmanned vehicle swarm systems. Modeling, Optimization and Information Technology. 2026;14(1). URL: https://moitvivt.ru/ru/journal/pdf?id=2155 DOI: 10.26102/2310-6018/2026.52.1.007 (In Russ).

24

Full text in PDF

Received 19.12.2025

Revised 14.01.2026

Accepted 19.01.2026