СОВЕРШЕНСТВОВАНИЕ АЛГОРИТМА РАСПОЗНАВАНИЯ РУКОПИСНЫХ ТЕКСТОВ НА ОСНОВЕ НОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

THE IMPROVEMENT OF THE ALGORITHM OF RECOGNITION OF HANDWRITTEN TEXTS ON THE BASIS OF THE VALUATION IMAGE

L'vovich I.Y.,  L'vovich Y.E.,  Mozgovoy A.A.,  Preobrazhensky A.P.,  Choporov O.N. 

UDC 004.352.243
DOI:

  • Abstract
  • List of references
  • About authors

One of the most popular approaches for handwriting recognition is the representation of entire words in sequences of symbols of the Markov chain. The set extracted from the images of the symbols is analyzed for compliance with a pre-prepared word patterns (model templates). The word whose model has the highest probability of formation of the analyzed sequences recognized the target. The variability of cursive writing words leads to the need of the analysis extracted from the image sequence of characters with models generated for words consisting of different numbers of digits. In the case where the analyzed word different from the word used for the model-only template, model template longer words earns you a mathematical advantage over the model of the shorter words, leading to recognition errors. The paper proposes to reduce recognition errors, the normalization of the image.

Keywords: ocr, optical recognition, handwriting, hmm

For citation: L'vovich I.Y., L'vovich Y.E., Mozgovoy A.A., Preobrazhensky A.P., Choporov O.N. THE IMPROVEMENT OF THE ALGORITHM OF RECOGNITION OF HANDWRITTEN TEXTS ON THE BASIS OF THE VALUATION IMAGE. Modeling, Optimization and Information Technology. 2016;4(3). URL: https://moit.vivt.ru/wp-content/uploads/2016/10/LvovichSoavtors_3_16_1.pdf DOI: (In Russ).

615

Full text in PDF

Published 30.09.2016