ОСНОВНЫЕ МЕТОДОЛОГИЧЕСКИЕ ОСОБЕННОСТИ РАСПОЗНАВАНИЯ ЛИЦ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

THE MAIN METHODOLOGICAL FEATURES OF FACE RECOGNITION

Logacheva O.E.,  Kostyuchenko V.V. 

UDC 004.93
DOI:

  • Abstract
  • List of references
  • About authors

The paper analyzes the main methodological features associated with recognition. The similar approaches are used in systems of security, protection. There have been three basic steps, combining different approaches to face detection. The key components of the procedures of recognition are: implementation of face detection, the keypoints individuals, view individuals as vectors of features. Provided the complexity of the allocation of persons in video data. The analysis of perspectives of application of algorithms of Viola-Jones and Dalal-Triggs. It is noted that the model of the deformable parts allows the use of a strong low-level characteristics based on histograms of oriented gradients, like the algorithm DalalTriggs.

1. Krugl' G. Professional'noe videonablyudenie. Praktika i tekhnologii analogovogo i tsifrovogo CCTV. / G.Krugl'// M.: Sek'yuriti Fokus, 2010. - 640 p.

2. Dam'yanovski V. CCTV. Bibliya videonablyudeniya. Tsifrovye i setevye tekhnologii. / V.Dam'yanovski //M.: Ay-Es-Es Press, 2006. - 480 p.

3. Kontseptsiya postroeniya i razvitiya apparatno-programmnogo kompleksa "Bezopasnyy gorod" // Rasporyazhenie Pravitel'stva Rossiyskoy Federatsii ot 3.12.2014 No. 2446-r

4. Ko T. A Survey on behavior analysis in video surveillance for homeland a. security application / T.Ko // 37th IEEE Applied Imagery Pattern Recognition Workshop. AIPR, 2008. P. 1-8.

5. Zhao W. Face recognition: A literature survey / W.Zhao, R.Chellappa, P.Phillips, A.Rosenfeld // ACM Computing Surveys (CSUR). 2003. V. 35, № 4. P. 399-458

6. Brey P. Ethical Aspects of Face Recognition Systems in Public Places / P. Brey // Journal of Information, Communication & Ethics in Society. 2004. a. P.97-109.

7. Brey P. Ethical Aspects of Face Recognition Systems in Public Places / P. Brey // Journal of Information, Communication & Ethics in Society. 2004. pp. 97-109.

8. Brilyuk D.V. Raspoznavanie cheloveka po izobrazheniyu litsa neyrosetevymi metodami. / D.V.Brilyuk, V.V.Starovoytov // Minsk: In-t tekhn. kibernetiki NAN Belarusi, 2002. - 54 p.

9. Freund Y. Experiments with a new boosting algorithm / Y.Freund, R.E.Schapire // Machine Learning: Proc. of the 13th International Conference. 1996. P. 148-156.

10. Dalal N. Histograms of Oriented Gradients for Human Detection / N.Dalal, B.Triggs // Proc. of the IEEE Conference Computer Vision and Pattern Recognition. 2005. P. 886-893.

11. Cerna L.R. Face Detection: Histogram of Oriented Gradients and Bag of Feature Method / L.R.Cerna, G.Camara-Chaves, D.Menotti // Proc. of the International Conference on Image Processing, Computer Vision & Pattern Recognition (IPCV). 2013. 5 p.

12. Felzenszwalb P. A Discriminatively Trained, Multiscale, Deformable Part Model / P.Felzenszwalb, D.McAllester, D.Ramanan // Proc. of the IEEE Conference on Computer Vision and Pattern Recognition. 2008. P. 1-8.

13. Zhu X. Face detection, pose estimation and landmark localization in the wild / X.Zhu, D. Ramanan // Proc. of the IEEE Conference on Computer Vision and Pattern Recognition. 2012. 8 p.

14. LeCun Y. Gradient-based learning applied to document recognition / Y.LeCun, L.Bottou, Y.Bengio, P.Haffner // Proc. of the IEEE. 1998. V. 86, no. 11. P. 2278-2324.

15. Pen'kov P.V. Ekspertnye metody uluchsheniya sistem upravleniya / P.V.Pen'kov // Vestnik Voronezhskogo instituta vysokikh tekhnologiy. 2012. No. 9. pp. 108-110.

16. Golovinov S.O. Tsifrovaya obrabotka signalov / S.O.Golovinov, S.G.Mironchenko, E.V.Shchepilov, A.P.Preobrazhenskiy // Vestnik Voronezhskogo instituta vysokikh tekhnologiy. 2009. No. 4. pp. 064-065.

17. Preobrazhenskiy A.P. Issledovanie vozmozhnosti opredeleniya formy ob"ekta v okrestnosti vosstanovleniya lokal'nykh otrazhateley na poverkhnosti ob"ektov po ikh diagrammam obratnogo rasseyaniya / A.P.Preobrazhenskiy // Telekommunikatsii. 2003. No. 4. pp. 29-32.

18. Preobrazhenskiy A.P. Approksimatsiya kharakteristik rasseyaniya elektromagnitnykh voln elementov, vkhodyashchikh v sostav ob"ektov slozhnoy formy / A.P.Preobrazhenskiy, Yu.P.Khukhryanskiy // Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2005. Vol. 1. No. 8. pp. 15-16.

19. Preobrazhenskiy A.P. Algoritmy prognozirovaniya radiolokatsionnykh kharakteristik ob"ektov pri vosstanovlenii radiolokatsionnykh izobrazheniy / A.P.Preobrazhenskiy, O.N.Choporov // Sistemy upravleniya i informatsionnye tekhnologii. 2004. Vol. 17. No. 5. pp. 85- 87.

20. Kosilov A.T. Vosstanovlenie radiolokatsionnykh izobrazheniy ob"ektov s ispol'zovaniem metodov radiogolografii / A.T.Kosilov, A.P.Preobrazhenskiy // Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2005. Vol. 1. No. 8. pp. 79-81.

21. Чутченко Ю.Е. Исследование возможности улучшения качества изображения / Ю.Е.Чутченко, А.П.Преображенский // Территория науки. 2007. № 3. С. 364-369.

22. Danitsa A.I. Modeli kanalov peredachi dannykh / A.I.Danitsa, V.N.Kostrova // Vestnik Voronezhskogo instituta vysokikh tekhnologiy. 2016. No. 2(17). pp. 86-90.

23. Maksimova A.A. Metody issledovaniya kharakteristik rasseyaniya elektromagnitnykh voln ob"ektami / A.A.Maksimova, A.G.Yurochkin // Vestnik Voronezhskogo instituta vysokikh tekhnologiy. 2016. No. 1(16). pp. 53-56.

Logacheva Oksana Evgenievna

Voronezh Institute of High Technologies

Voronezh, Russian Federation

Kostyuchenko Vyacheslav Vladimirovich

Radio engineering Corporation "VEGA"

Voronezh, Russian Federation

Keywords: face recognition, algorithm, digital image processing, information technology

For citation: Logacheva O.E., Kostyuchenko V.V. THE MAIN METHODOLOGICAL FEATURES OF FACE RECOGNITION. Modeling, Optimization and Information Technology. 2016;4(4). URL: https://moit.vivt.ru/wp-content/uploads/2016/12/LogachevaKostyuchenko_4_16_2.pdf DOI: (In Russ).

478

Full text in PDF

Published 31.12.2016