Keywords: genetic algorithm, global extremum, population, generation, selection, crossover, de jong’s function
RESEARCH OF THE EFFICIENCY OF THE GENETIC ALGORITHM WITH VARIOUS METHODS OF SELECTION, CROSSOVER TYPES AND STRATEGIES OF FORMATION OF GENERATIONS IN SEARCHING OF EXTREMUMS OF TEST FUNCTIONS
UDC УДК 004.023
DOI:
In this article the analysis of materials on genetic algorithms is carried out. The main ideas and principles underlying work of genetic algorithms are considered. The basic stages of the classical genetic algorithm work are analyzed in detail. The review of the most common methods of selection (roulette and tournament), types of crossover (single-point and uniform) and strategies of formation of generations (classical and elitist) is executed. On test functions the research of genetic algorithm with different methods of selection, types of crossover and strategy of formation of generations is carried out. For each type of algorithm, an estimate of the probability of finding a true solution is given. The received results of the experiments are carefully analyzed. The advantages and disadvantages of different methods of selection, types of crossover, strategy of formation of generations are revealed. The recommendations on the expediency of using genetic algorithms in various situations are stated. The possible directions for further research are defined.
1. John R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection - MIT Press, 1992. Vol. 2, No. 2, pp.78-84.
2. Darrel Whitley, A Genetic Algorithm Tutorial – Statistics and Computing, 1994. Vol. 4, pp. 65-85.
3. Herrera F., Losano M., Sanches A.M., Hybrid Crossover Operators for Real-Coded Genetic Algorithms: An Experimental Study.
4. Yang X.-S., Deb S., Engineering optimization by cuckoo search. - Int. J. Math. Modelling Num. Optimisation, 2010. Vol. 1, No. 4, pp. 330 - 343.
5. Rosenbrock H.H., An automatic method for finding the greatest or least value of a function». - The Computer Journal 3, 1960. pp. 175–184.
6. Rastrigin L. A., Systems of Extremal Control - Nauka, Moscow, 1974.
7. Mikhalev A.S., Rouban A.I. Global optimization on set of mixed variables: continuous and discrete with unordered possible values // IOP Conf. Series: Materials Science and Engineering, 2016, Vol. 22, Issue 1: 19th International Scientific Conference Reshetnev Readings 2015.
8. Khant E. Iskusstvennyy intellekt / Per. s angl. – M.: Izd-vo «MIR», 1978. – p. 281
9. Khaykin S. Neyronnye seti: polnyy kurs, 2-e izd. / Per. s angl. – M.: Izd. dom «Vil'yams», 2006. – p.1104.
10. Vakhrusheva M.Yu., Glebov M.P. Primenenie tekhnologii Data Mining v reshenii demograficheskikh problem// Trudy Bratskogo gosudarstvennogo universiteta. Seriya: Ekonomika i upravlenie. 2013. Vol. 1. pp. 255-258.
11. Kharitonova P.V. Primenenie IT-tekhnologiy pri prinyatii upravlencheskikh resheniy v malom i srednem biznese / Trudy Bratskogo gosudarstvennogo universiteta. Seriya: Ekonomika i upravlenie. 2015. Vol. 1. pp. 266-269.
12. Evdokimov I.V. Kadrovoe obespechenie vnedreniya SCADA-sistem na predpriyatiyakh//Trudy Bratskogo gosudarstvennogo universiteta. Seriya: Ekonomika i upravlenie. 2005. Vol. 1. pp. 116-119.
13. Vakhrusheva M.Yu., Evdokimov I.V. Razrabotka programmnogo obespecheniya analiticheskikh informatsionnykh sistem//Trudy Bratskogo gosudarstvennogo universiteta. Seriya: Ekonomika i upravlenie. 2014. Vol. 1. No. 1. pp. 196-199.
Keywords: genetic algorithm, global extremum, population, generation, selection, crossover, de jong’s function
For citation: Maraev V.S., Bezzubenko E.A., Cherkashin D.A., Mikhalev A.S. RESEARCH OF THE EFFICIENCY OF THE GENETIC ALGORITHM WITH VARIOUS METHODS OF SELECTION, CROSSOVER TYPES AND STRATEGIES OF FORMATION OF GENERATIONS IN SEARCHING OF EXTREMUMS OF TEST FUNCTIONS. Modeling, Optimization and Information Technology. 2017;5(2). URL: https://moit.vivt.ru/wp-content/uploads/2017/05/MaraevSoavtors%20_2_17_1.pdf DOI: (In Russ).
Published 30.06.2017