The high cost of organizations' IT systems and the significant losses from unplanned
downtime caused by failures in such systems, make the search for new approaches to
monitoring urgent. The most advanced is the proactive approach to monitoring, which is
aimed not only at regular monitoring of the status of monitoring objects and responding to
incidents, but also in forecasting possible emergencies at an early stage. This article is aimed at researching models and methods for proactive monitoring of IT systems. The main task of
proactive monitoring is reduced to the task of forecasting time series taking into account
external factors. To disclose the process under investigation, the classification of forecasting
models of time series is considered and an overview of modern works devoted to models and
methods for predicting the health of various components of the IT infrastructure is reviewed.
The analysis showed that there is no generalized model that allows to solve any given task of
forecasting the state of IT systems. The process of implementing the model and the
corresponding method should be based on the capabilities of the selected classes of models
and the requirements for solving the problem. During the review, a number of proposals are
formulated that will improve the effectiveness of proactive monitoring and the quality of the
forecast model. Conducting a comprehensive monitoring of the components of the IT system
allows you to analyze the root causes that lead to an inoperative state of the system. For the
correct detection of threshold values of the operable state of objects, it is necessary to use
"dynamic thresholds". Forecasting the state of monitoring objects a few steps forward is an
urgent issue for a distributed IT system.
1. Ardentov A. A., Moskovskiy A. A., Pervin A. Yu., Stotskiy M. V. Algoritmy
prognozirovaniya apparatnykh sboev v sisteme monitoringa klasternykh
ustanovok // XII nauchno-prakticheskaya konferentsiya universiteta goroda
Pereslavlya. – 2008. No. 6 – pp. 84-95.
2. Boks Dzh., Analiz vremennykh ryadov, prognoz i upravlenie. / Dzh. Boks.
G.M.Dzhenkins. – M.: Mir, 1974. – 406 p.
3. Petrakov V. A., Bogachev D. N. Primenenie neyronnykh setey v monitoringe
vychislitel'nykh tsentrov // Izvestiya Yuzhnogo federal'nogo universiteta.
Tekhnicheskie nauki. – 2009. No. 2. pp. 82-87.
4. Saenko I. B., Skorik F. A., Kotenko I. V. Monitoring i prognozirovanie
sostoyaniya komp'yuternykh setey na osnove primeneniya gibridnykh
neyronnykh setey //Izvestiya vysshikh uchebnykh zavedeniy.
Priborostroenie. – 2016. – Vol. 59. – No. 10.
5. Rolik A.I., Timofeeva Yu.S., Turskiy N.I. Upravlenie ustraneniem
neispravnostey v IT-sistemakh // Vestnik NTUU «KPI». Informatika,
upravlenie i vychislitel'naya tekhnika. – 2008. No. 49. pp. 95-108
6. Tikhonov, E.E. Prognozirovanie v usloviyakh rynka. / E.E. Tikhonov. –
Nevinnomyssk, 2006. – 221 p.
7. Trukhachev A.A., Ivkina E.A. Primenenie metodiki prognozirovaniya
masshtabiruemosti dlya postroeniya sistem vysokoy dostupnosti na osnove
SUBD Oracle // Spetstekhnika i svyaz'. 2011. No.6.
8. Fedorov E. E., Al'-Ababnekh Kh. A., Al'rababa Kh. Metod prognoza
proizvoditel'nosti servernykh komp'yuternykh sistem //Naukovі pratsі
Donets'kogo natsіonal'nogo tekhnіchnogo unіversitetu. Serіya: Іnformatika,
kіbernetika ta obchislyuval'na tekhnіka. – 2015. – No. 1. – pp. 52-58.
9. Chuchueva I. A. Model' prognozirovaniya vremennykh ryadov po vyborke
maksimal'nogo podobiya //Moskva. – 2012.
10. Shelupanov A.A., Iskhakov S.Yu., Timchenko S.V. Prognozirovanie v
sisteme monitoringa lokal'nykh setey // Doklady Tomskogo
gosudarstvennogo universiteta sistem upravleniya i radioelektroniki– 2012.
No. 1-2 – pp. 100-103.
11. Alexander La rosa. Root Cause Analysis and Monitoring Tools: A Perfect
Match. [Elektronnyy resurs] – Rezhim dostupa: URL:
https://blog.pandorafms.org/root-cause-analysis/ (Data obrashcheniya:
24.01.2018)
12. Kothamasu R., Huang S. H., VerDuin W. H. System health monitoring and
prognostics—a review of current paradigms and practices //The International
Journal of Advanced Manufacturing Technology. – 2006. – Vol. 28. – No. 9-
10. – pp. 1012-1024.
13. .Rodd S. F., Kulkarni U. P. Adaptive tuning algorithm for performance
tuning of database management system //arXiv preprint arXiv:1005.0972.
– 2010.
14. Sahoo R. K. et al. Critical event prediction for proactive management in
large-scale computer clusters //Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. –
ACM, 2003. – С. 426-435.
Dubrovin Mikhail Grigorievich
Email: igluhih@utmn.ru
Tyumen State University
Tyumen, Russian Federation
Glukhikh Igor' Nikolayevich
Doctor of Technical Sciences, Professor
Email: mikle1203@yandex.ru
Tyumen State University
Tyumen, Russian Federation