РЕШЕНИЕ ЗАДАЧИ РАСПОЗНАВАНИЯ ЛИЦ С ИСПОЛЬЗОВАНИЕМ АЛГОРИТМОВ МАШИННОГО ОБУЧЕНИЯ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

THE SOLUTION OF THE PURPOSE OF RECOGNITION OF PERSONS WITH THE USE OF MACHINE TRAINING ALGORITHMS

Popova N.A.,  Nazarov M.A.,  Vlasov M.V. 

UDC 004.021
DOI:

  • Abstract
  • List of references
  • About authors

The purpose of this article is to generalize the solutions of experience and implement a neural network for face recognition. The neural network is based on special algorithms of machine learning. As an input, the algorithm receives an image with the face of one person or persons of several people, after which all persons in this image are searched using gradient histograms, the result is a fragment of the image where the basic structures of the face or persons are clearly seen. In order to determine the unique features of the face, it is necessary to take into account the difference in the angle of the face and the degree of its illumination, for this purpose, on selected fragments of the application of estimation algorithms to search for 68 points that exist on each face, it is possible to center the eyes and mouth as best as possible for more exact encoding. Encoding an image involves building an accurate "face map" consisting of 128 dimensions. Based on the search results, the convolutional neural network, using the SVM linear classifier algorithm, can determine the correspondence between different photos.

1. Histograms of Oriented Gradients for Human Detection (In CVPR'05). N. Dalal and B. Triggs. An effective pedestrian detector based on evaluating histograms of oriented image gradients in a grid. [Elektronnyy resurs] // URL: http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf (data obrashcheniya: 25.12.2017).

2. V. Kazemi and S. Josephine. One millisecond face alignment with an ensemble of regression trees. In CVPR, 2014. [Elektronnyy resurs] // URL: http://www.csc.kth.se/~vahidk/papers/KazemiCVPR14.pdf (data obrashcheniya: 25.12.2017).

3. F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In Proc. CVPR, 2015. [Elektronnyy resurs] // URL: https://www.cvfoundation.org/openaccess/content_cvpr_2015/app/1A_089.pdf (data obrashcheniya: 25.12.2017).

4. Christopher M. Bishop F.R.Eng. Pattern Recognition and Machine Learning. [Elektronnyy resurs] // URL: https://goo.gl/WLqpHN (data obrashcheniya: 25.12.2017)

Popova Natalia Alexandrovna
Candidate of Technical Sciences


Penza, Russian Federation

Nazarov Mikhail Alexandrovich

Penza State University

Penza, Russian Federation

Vlasov Maxim Vyacheslavovich

Email: mxv.vlasov@gmail.com

Penza State University

Penza, Russian Federation

Keywords: face recognition, machine learning, histogram of directed gradients, hog, evaluation of the person's orientation, affine transformations, deep training

For citation: Popova N.A., Nazarov M.A., Vlasov M.V. THE SOLUTION OF THE PURPOSE OF RECOGNITION OF PERSONS WITH THE USE OF MACHINE TRAINING ALGORITHMS. Modeling, Optimization and Information Technology. 2018;6(1). URL: https://moit.vivt.ru/wp-content/uploads/2018/01/PopovaSoavtori_1_1_18.pdf DOI: (In Russ).

655

Full text in PDF

Published 31.03.2018