Keywords: tensor analysis of networks, telecommunication network, quality of service, probability and time characteristics, queuing system
FEATURES OF APPLICATION OF TENSOR ANALYSIS TO TELECOMMUNICATION NETWORKS MODELLING
UDC 621.391
DOI:
The paper considers the main provisions of the application of tensor analysis to the telecommunication networks modeling for the probabilistic and time characteristics estimating of these networks as indicators of the level of quality of service. Technologies of modern telecommunication networks assume the use of structurally complicated information transmission routes, which is caused by a large number of devices and the dynamically changing topology of the network. To simulate processes in telecommunication networks, queuing theory methods are commonly used to estimate QoS indicators, such as the average delay time or the probability of loss, but these methods are not allowed use the information about the structure of transmission routes. However, this information is widely used in graph methods with taking into account the topology of the network. Tensor analysis of networks allows to combine information about the processes occurring in individual network systems, and information about the structure of information transmission routes. In this work, we consider the features of the application of tensor analysis to the problem of the telecommunication networks modeling. For this purpose, the main axioms of the proposed method are formulated, the classification of telecommunication network characteristics and parameters is made from the point of view of tensor analysis, methods and models of tensor analysis are considered, the algorithm for applying the approach to solving the problem of modeling telecommunication networks is developed.
1. Gol'dshteyn B.S., Kucheryavyy A.E. Seti svyazi post-NGN. – SPb.: BKhVPeterburg, 2014.
2. Recommendation ITU-T Y.1541. Network performance objectives for IPbased services. – ITU, 2011.
3. Saati T.L. Elementy teorii massovogo obsluzhivaniya i ee prilozheniya. – M.: Librokom, 2010.
4. Kron G. Tenzornyy analiz setey. – M.: Sovetskoe radio, 1978.
5. Petrov A.E. Tenzornyy metod dvoystvennykh setey. – M. : OOO «Tsentr informatsionnykh tekhnologiy v prirodopol'zovanii», 2007.
6. Lemeshko A.V. Evseeva O.Yu., Garkusha S.V. Rezul'taty issledovaniya tenzornoy modeli mnogoputevoy marshrutizatsii s obespecheniem kachestva obsluzhivaniya v telekommunikatsionnykh setyakh // Vestnik YuzhnoUral'skogo gosudarstvennogo universiteta. Seriya «Komp'yuternye tekhnologii, upravlenie, radioelektronika». – 2013. – Vol. 13, No. 4. – pp. 38–54.
7. Ponomarev D.Yu. Tenzornaya metodologiya v informatsionnykh kommunikatsiyakh // Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie. – 2012. – Vol. 55, 5. – pp. 18-23.
8. Ponomarev D. IMS quality of service estimation with tensor concept // Journal of Siberian Federal University. Engineering & Technologies. – 2013. – Vol. 6, 4. – pp. 462-473.
9. Ponomarev D.Yu. Model' raspredeleniya trafika dlya perspektivnykh infokommunikatsionnykh sputnikovykh setey [Elektronnyy resurs] // Sovremennye problemy nauki i obrazovaniya. – 2015. – 1. URL: www.science-education.ru/121-18407 (data obrashcheniya: 15.04.2015)
10. Ponomarev D.Yu. Uzlovaya model' raspredeleniya trafika dlya perspektivnykh sputnikovykh setey svyazi // Uspekhi sovremennoy radioelektroniki. – 2015. – 10. – pp. 55-58.
11. Myl'nikov A.A., Prangishvili A.I. Gomologicheskie i kogomologicheskie invarianty elektricheskikh tsepey // Avtomatika i telemekhanika. – 2002. – 4. – pp. 67-75.
12. Vasil'chenko R.S., Ponomarev D.Yu. Programmnyy kompleks otsenki parametrov QoS infokommunikatsionnykh setey. – FIPS (Rospatent) : Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM, 21.09.2012. – No. 2012618595.
Keywords: tensor analysis of networks, telecommunication network, quality of service, probability and time characteristics, queuing system
For citation: Ponomarev D.Y. FEATURES OF APPLICATION OF TENSOR ANALYSIS TO TELECOMMUNICATION NETWORKS MODELLING. Modeling, Optimization and Information Technology. 2018;6(2). URL: https://moit.vivt.ru/wp-content/uploads/2018/04/Ponomarev_2_18_1.pdf DOI: (In Russ).
Published 30.06.2018