ВЫБОР БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ ДЛЯ ЦИФРОВОГО СЕЛЬСКОГО ХОЗЯЙСТВА
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

THE CHOICE OF UNMANNED AERIAL VEHICLES FOR DIGITAL AGRICULTURE

Koshkarov A.V. 

UDC 519.252
DOI:

  • Abstract
  • List of references
  • About authors

Agriculture as an element of ensuring food security of countries plays an important role in the world and regional economy. The use of digital technologies in agriculture can be one of the sources of growth in the industry. Data in agriculture can be collected using various mechanisms, including the use of unmanned aerial vehicles. This article discusses the selection of unmanned aerial vehicles for agriculture and gives recommendations to farmers on the choice of drones for data collection and monitoring. For example, it is possible to collect useful information on the state of agricultural fields (the size of fields, the level of germination, the state of vegetation) with the help of drones. The basis of this study is an overview of the relevant literature on the use of unmanned aerial vehicles in agriculture in different countries and the author's own experience in implementing the project with the use of an agricultural drone in the experimental fields of the Astrakhan State University. In addition, a survey of farmers of the Astrakhan region was conducted to identify the most demanded areas of agriculture for monitoring in order to increase the effectiveness of decision-making.

1. Lelong C. C. D. et al. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots //Sensors. – 2008. – Vol. 8. – № 5. – pp. 3557-3585.

2. Berni J. A. J. et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle //IEEE Transactions on Geoscience and Remote Sensing. – 2009. – Vol. 47. – № 3. – pp. 722-738.

3. d'Oleire-Oltmanns S. et al. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco //Remote Sensing. – 2012. – Vol. 4. – № 11. – pp. 3390-3416.

4. Everaerts J. et al. The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping //The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – 2008. – Vol. 37. – pp. 1187-1192.

5. Zainuddin K. et al. Verification test on ability to use low-cost UAV for quantifying tree height //Signal Processing & Its Applications (CSPA), 2016 IEEE 12th International Colloquium. – IEEE, 2016. – pp. 317-321.

6. Park J. K., Park J. Crop classification using imagery of drone //International Conference on Environmental Engineering and Remote Sensing (EERS2015). – 2015. - pp. 91-94.

7. Teke M., Yardımcı Y. Classification of crops using multitemporal hyperion images //Agro-Geoinformatics (Agro-geoinformatics), 2015 Fourth International Conference. – IEEE, 2015. – pp. 282-287.

8. Bellvert J. et al. Mapping crop water stress index in a ‘Pinotnoir’vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle //Precision agriculture. – 2014. – Vol. 15. – № 4. – pp. 361-376.

9. Gago J. et al. UAVs challenge to assess water stress for sustainable agriculture //Agricultural water management. – 2015. – Vol. 153. – pp. 9- 19.

10. Yue J. et al. The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests //Intelligent Automation & Soft Computing. – 2012. – Vol. 18. – № 8. – pp. 1043-1052.

11. Faiçal B. S. et al. The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides //Journal of Systems Architecture. – 2014. – Vol. 60. – № 4. – pp. 393-404.

12. Zarco-Tejada P. J. et al. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV) //Agricultural and forest meteorology. – 2013. – Vol. 171. – pp. 281-294.

13. Córcoles J. I. et al. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle //Biosystems engineering. – 2013. – Vol. 115. – № 1. – pp. 31-42.

14. Göktoǧan A. H. et al. A rotary-wing unmanned air vehicle for aquatic weed surveillance and management //Journal of Intelligent and Robotic Systems. – 2010. – Vol. 57. – p. 467.

15. Torres-Sánchez J. et al. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management //PloS one. – 2013. – Vol. 8. – № 3. – pp. 1-15.

16. Zhang C., Kovacs J. M. The application of small unmanned aerial systems for precision agriculture: a review //Precision agriculture. – 2012. – Vol. 13. – № 6. – pp. 693-712.

17. Forster D., Buehler Y., Kellenberger T. Mapping urban and peri-urban agriculture using high spatial resolution satellite data //Journal of Applied Remote Sensing. – 2009. – Vol. 3. – № 1. – pp. 1-12.

18. Schmedtmann J., Campagnolo M. L. Reliable crop identification with satellite imagery in the context of common agriculture policy subsidy control //Remote Sensing. – 2015. – Vol. 7. – № 7. – pp. 9325-9346.

19. Ipate G., Voicu G., Dinu I. Research on The Use of Drones in Precision Agriculture //University Politehnica of Bucharest Bulletin Series. – 2015. – Vol. 77. – № 4. – pp. 1-12.

20. Marinello F. et al. Technical analysis of unmanned aerial vehicles (drones) for agricultural applications //Engineering for Rural Development. – 2016. – Vol. 15. - pp. 870-875.

21. Bhandari A. K., Kumar A., Singh G. K. Feature extraction using Normalized Difference Vegetation Index (NDVI): a case study of Jabalpur city //Procedia Technology. – 2012. – Vol. 6. – pp. 612-621.

Koshkarov Alexander Vasilievich
Candidate of Technical Sciences
Email: avkoshkarov@gmail.com

Astrakhan State University

Astrakhan, Russian Federation

Keywords: digital agriculture, data science, agricultural drone, unmanned aerial vehicle, precision farming

For citation: Koshkarov A.V. THE CHOICE OF UNMANNED AERIAL VEHICLES FOR DIGITAL AGRICULTURE. Modeling, Optimization and Information Technology. 2018;6(2). URL: https://moit.vivt.ru/wp-content/uploads/2018/04/Koshkarov_2_18_1.pdf DOI: (In Russ).

803

Full text in PDF

Published 30.06.2018