ОЦЕНКА ПАРАМЕТРОВ ГЛАЗКОВОЙ ДИАГРАММЫ ПО ПЕРЕХОДНОЙ И АМПЛИТУДНО-ЧАСТОТНОЙ ХАРАКТЕРИСТИКАМ С ИСПОЛЬЗОВАНИЕМ НЕЙРОННОЙ СЕТИ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

PREDICTION OF EYE-DIAGRAM PARAMETERS FROM TRANSIENT AND GAIN-FREQUENCY CHARACTERISTICS USING NEURAL NETWORK

Smirnov alexander vitalievich S.S. 

UDC 621.396
DOI:

  • Abstract
  • List of references
  • About authors

A capability of prediction of the eye-diagram width and height with using artificial neural network (ANN) was investigated. For this purpose, were simulated more than 750 examples of telecommunication channels with different transfer functions. Eye-diagrams were composed for all examples by means of convolution of random pulse sequence and pulse response and parameters of these eye-diagrams were measured. Some ANN was learned. Their input variables were transient characteristic delay time, raise time, magnitude of voltage peak and oscillation duration as well as a gain value at the half of clock rate. For each of predicted parameters distinct ANN was chosen for different ranges of input variables. Root mean square errors of eye-diagram parameters prediction using these ANN were in the range of 2 - 4%. Correlation coefficient of predicted and known values was more then 0,98. Sufficient decreasing of computational time is achieved compare with estimation of the eye width and height using eye-diagram modeling. This method can be used for optimization of communication channel characteristics when eye-diagram parameters are the components of the goal function.

1. Prokis Dj. Tsyfrovaia svias`. Per. s angl. / Pod red. D.D.Klovskogo. - M.: Radio i svias`, 2000. – 800 s.

2. ITU-T Recommendation G.957. Optical interfaces for equipments and systems relating to the synchronous digital hierarchy. 2006.

3. OFSTP-4. Optical Eye Pattern Measurement Procedure, TIA/EIA-526-4, 1993.

4. Diakonov V.P. Sovremennaya apparatura testirovaniia i kontrolia sverhskorostnyh sistem i linij sviazy // Besprovodnye tehnologii, 2010, No.4, pp.52-59.

5. Leib H., Pasupathi S. Digital transmission performance of standard analog filters. // IEEE Transaction on Communications. Vol.40, Iss.1, Jan,1992. P. 42 – 50.

6. Torres-Ferrera P., Ferrero V., Valvo M., Gaudino R. Impact of the overall electrical filter shaping in next-generation 25G and 50G PON. // URL: https://arxiv.org/ pdf/1801.08584, 25 Jan. 2018.

7. Haykin S. Neironnye seti: polnyi kurs. 2-e izd. ispr. : Per. s angl. – M.: OOO "I.D.Vil`iams". 2006. -1104 p.

8. Ambasana N., Anand G, Mutnury B., Gope D. Application of artificial neural networks for eye-height/width prediction from S-parameters. // 2014 IEEE 23rd Conference on Electrical Performance of Electronic Packaging and Systems. 26-29 Oct. 2014.

9. Ambasana N., Anand G, Mutnury B., Gope D. Eye height/width prediction from S-parameters using learning-based models. // IEEE Transactions on Components, Packaging and Manufacturing Technology. Vol.6, Iss.6, June 2016, P. 873-885.

10. Ambasana N., Anand G, Mutnury B., Gope D. Eye height/width prediction from S-parameters using learning-based models. // IEEE Transactions on Components, Packaging and Manufacturing Technology. Vol.6, Iss.6, June 2016, P. 873-885.

11. Lu T., Wu K., Yang Zh., Sun J. High-speed channel modeling with deep neural networks for signal integrity analysis. // URL: https://research.google.com/pubs/archive/46433.pdf.

12. Smirnov A.V. Optimal`nye po Pareto approximatsii peredatochnyh funktsii elektricheskih fil`trov // Aktual`nye problemy gumanitarnyh i estestvennyh nauk. 2015. №05 (76). Chast` 1, pp.74-78.

13. Smirnov A.V. Metod poiska optimal`nyh drobno-chebyshevskih approximatsii AChH // Zhurnal radioelektroniki [elektronnyi zhurnal]. 2018. No.3. URL: http://jre.cplire.ru /jre/mar18/7/text.pdf.

14. URL: http://www.mathwork.com.

Smirnov alexander vitalievich Smirnov alexander vitalievich Smirnov alexander vitalievich
Candidate of Technical Sciences, Associate Professor
Email: avs_ramb@rambler.ru

Russia technological university

Moscow, Russian Federation

Keywords: eye-diagram, transient characteristic, gain-frequency characteristic, neural network, approximation

For citation: Smirnov alexander vitalievich S.S. PREDICTION OF EYE-DIAGRAM PARAMETERS FROM TRANSIENT AND GAIN-FREQUENCY CHARACTERISTICS USING NEURAL NETWORK. Modeling, Optimization and Information Technology. 2018;6(3). URL: https://moit.vivt.ru/wp-content/uploads/2018/07/Smirnov_3_18_1.pdf DOI: (In Russ).

666

Full text in PDF

Published 30.09.2018