АНАЛИЗ ПОДСТРОЙКИ СТАБИЛИЗИРУЮЩИХ ПАРАМЕТРОВ ДЛЯ СШИВАНИЯ ЧАСТЕЙ ДЕКОМПОЗИРОВАННОЙ РАДИОТЕХНИЧЕСКОЙ СИСТЕМЫ ПРИ ИСПОЛЬЗОВАНИИ ДОПОЛНЕНИЯ ШУРА
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

ANALYSIS OF THE ADJUSTMENT FOR THE STABILIZING PARAMETERS FOR COUPLING PARTS OF THE DECOMPOSED RADIO SYSTEM USING THE SCHUR'S COMPLEMENT

Sklyar andrey vadimovich A.V. 

UDC 621.3.011.712
DOI: 10.26102/2310-6018/2019.24.1.02

  • Abstract
  • List of references
  • About authors

The article continues the cycle of the author's works on the subject of HIL-simulation. The article proposes an algorithm for the decomposition of any radio system and the subsequent coupling of its parts by adjusting only one of the two stabilizing parameters of the coupling scheme. In addition, the possibility of using a coupling scheme as a matching device between fragments of the system through the aspect of system stability was analyzed. All this makes it possible to significantly reduce the amount of debugging work performed in HILsimulation of radio systems, both in the field of research of elementary systems and in working out options for creating complex multisystems. As a proof of the correctness of the proposed method, an analytical calculation was performed, in general, showing the possibility of adjusting only one stabilizing parameter in the coupling scheme of a decomposed system, while convergence of the parameters of the divided system to the parameters of the original system can be achieved in several iterations. In some cases, this convergence can be achieved in one iteration. In the conclusion of the article, the calculation was performed using a numerical example for practical confirmation of the proposed method. For clarity and correct understanding of the described actions, illustrations are given of both the operations performed and the results of the calculations.

1. Ren, W., 2007. Accuracy Evaluation of Power Hardware-in-the-Loop (PHIL) Simulation, PhD thesis, Florida State University, Tallahassee, pp: 1-68.

2. Avras, A., A.J. Roscoe and G.M. Burt, 2014. Scalable Real-Time Controller Hardware-In-the-Loop Testing for Multiple Interconnected Converters. The UPEC 2014 conference, IEEE Date Views 02.06.2017 www.dx.doi.org/10.1109/UPEC.2014.6934620.

3. Sklyar A.V. Polunaturnoe modelirovanie mnogofunktsional'nykh modul'nykh sistem. Usloviya vybora modeli. Inzhenernyy vestnik Dona, 2017, No.2.

4. Shaykin A.S., Shaykina E.V. Primenenie kompleksa polunaturnogo modelirovaniya v protsesse proektirovaniya informatsionno-izmeritel'nykh i upravlyayushchikh sistem. Inzhenernyy vestnik Dona, 2014, No.1.

5. Sklyar A.V., Merezhin N.I. Polunaturnoe modelirovanie kompleksnykh sistem // Komp'yuternye i informatsionnye tekhnologii v nauke, inzhenerii i upravlenii "KomTekh-2017": materialy Vserossiyskoy nauchno-tekhnicheskoy konferentsii s mezhdunarodnym uchastiem. Taganrog: YuFU, 2017.pp. 21-24.

6. Popov V.P., Maksimov M.N., Merezhin N.I. Ob ustoychivosti i skhodimosti modelirovaniya po chastyam // Vestnik Yuzhnogo nauchnogo tsentra RAN. Vol.1. No. 3. 2005. pp. 11-21.

7. Merezhin N.I. Stend dlya analogo-tsifrovogo modelirovaniya s ispol'zovaniem adaptivnykh skhem sshivaniya // Materialy mezhdunarodnoy nauchnoy konferentsii «Metody i algoritmy prinyatiya effektivnykh resheniy». Ch.2. – Taganrog: TTI YuFU, 2009. pp. 47-51.

8. Maksimov M.N., Merezhin N.I., Sklyar A.V., Merezhin D.N. Ispol'zovanie operatora Puankare-Steklova dlya obespecheniya ustoychivosti PHIL modelirovaniya // Sotrudnichestvo stran BRIKS dlya ustoychivogo razvitiya: materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii molodykh uchenykh stran BRIKS. Rostov-na-Donu: YuFU, 2015. Vol..2. pp. 81-82.

9. Kopysov S.P. Metody dekompozitsii i parallel'nye raspredelennye tekhnologii dlya adaptivnykh versiy metoda konechnykh elementov : dis. ... dok. fiz.-mat. nauk: 05.13.18. Izhevsk, 2006. 404 p.

10. Maksimov M.N., Merezhin N.I., Fedosov V.P., Labyntsev A.V., Maksimov A.A. Ekvivalentnaya skhema sshivayushchego chetyrekhpolyusnika // Radiotekhnika i elektronika. 2016. Vol.61. No. 2. pp. 162-169.

11. Maksimov M., Merezhin N., Lyashev V., Sinyutin S. Poincare-Steklov filter in hardware-in-the-loop modeling. 2017 International Siberian Conference on Control and Communications (SIBCON 2017). Date Views 15.12.2018 www.doi.org/10.1109/SIBCON.2017.7998531.

12. Sklyar A.V., Maksimov M.N. Rasshcheplenie sistemnoy matritsy s pomoshch'yu obobshchennoy skhemy sshivaniya pri polunaturnom modelirovanii radiotekhnicheskikh tsepey// Materialy Vserossiyskoy nauchno-tekhnicheskoy konferentsii «Sovremennye problemy radioelektroniki». Krasnoyarsk: SFU, 2018. pp. 41-45

Sklyar andrey vadimovich Andrey Vadimovich

Email: sklyar.andrey@mail.ru

Southern federal University

Taganrog, Russian Federation

Keywords: stabilizing parameter, system decomposition, coupling scheme, hilmodeling, radio system, cramer's rule, schur complement

For citation: Sklyar andrey vadimovich A.V. ANALYSIS OF THE ADJUSTMENT FOR THE STABILIZING PARAMETERS FOR COUPLING PARTS OF THE DECOMPOSED RADIO SYSTEM USING THE SCHUR'S COMPLEMENT. Modeling, Optimization and Information Technology. 2019;7(1). URL: https://moit.vivt.ru/wp-content/uploads/2019/01/Sklyar_1_19_1.pdf DOI: 10.26102/2310-6018/2019.24.1.02 (In Russ).

580

Full text in PDF

Published 31.03.2019