МЕТОД АНАЛИЗА ИННОВАЦИОННЫХ ТЕНДЕНЦИЙ НА ОСНОВЕ ДАННЫХ ПАТЕНТНОГО МАССИВА
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

METHOD OF ANALYSIS OF INNOVATIVE TRENDS BASED ON PATENT CORPUS

Fomenkova M.A.,  Korobkin D.M.,  Fomenkov S.A.,  Kolesnikov S.G. 

UDC 004.83
DOI: 10.26102/2310-6018/2019.25.2.018

  • Abstract
  • List of references
  • About authors

This paper presents a method for analyzing innovation trends through the detection and analysis of patent activity, the identification of new technological capabilities, key modern technologies and inventions. As part of this study, it is proposed to use a method based on structures extracted from the SAO patent corpus. A five-step method has been developed for identifying SAO structures, expanding them, clustering, and also building flow sheets. This approach can be applied to the analysis of technological trends (trend mapping). This map visualizes the development of subclasses of patents identified through cluster analysis and technology over time. In addition to identifying technological capabilities, the described approach can be applied to construct maps to study the trends of competitors. Unlike a trend map developed using all applicants' patents, this competitor card limits its attention to a single organization. A map for each company visualizes the focus of technology development in the company, allowing for a comparative analysis between companies. Based on this map, the company can identify competitors with additional technologies and understand the technological advantages and disadvantages of the target area.

1. Fomenkova M.A., Korobkin D.M., Kravec A.G., Fomenkov S.A. Metodikaidentifikacii SAO struktur. Matematicheskiemetody v tekhnikeitekhnologiyah - MMTT. 2017. T. 5. S. 85-88.

2. Lee, J., Kim, C., & Shin, J. (2017). Technology opportunity discovery to R&D planning: Key technological performance analysis. Technological Forecasting and Social Change, 119, 53–63.

3. Guo, J., Wang, X., Li, Q., & Zhu, D. (2016). Subject–action–object-based morphology analysis for determining the direction of technological change. Technological Forecasting and Social Change, 105, 27–40.

4. Moehrle, M. G., Walter, L., Geritz, A., & Muller, S. (2005). Patent-based inventor profiles as a basis for human resource decisions in research and development. R&D Management, 35(5), 513–524. No, H. J., & Lim, H. (2009). Exploration of nanobiotechnologies using patent data. The Journal of Intellectual Property, 4(3), 109–129.

5. Park, H., Yoon, J., & Kim, K. (2011). Identifying patent infringement using SAO based semantic technological similarities. Scientometrics, 90(2), 515– 529.

6. Wang, X., Wang, Z., Huang, Y., Liu, Y., Zhang, J., Heng, X., et al. (2017). Identifying R&D partners through subject–action–object semantic analysis in a problem & solution pattern. Technology Analysis & Strategic Management, 29, 1–14.

7. Wich, Y., Warschat, J., Spath, D., Ardilio, A., König-Urban, K., & Uhlmann, E. (2013, July). Using a text mining tool for patent analyses: Development of a new method for the repairing of gas turbines. In 2013 Proceedings of PICMET’13 Technology Management in the IT-Driven Services (PICMET) (pp. 1010–1016). IEEE.

8. Yoon, J., & Kim, K. (2011b). Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks. Scientometrics, 88(1), 213–228.

9. Zhang, Y., Zhou, X., Porter, A. L., & Gomila, J. M. V. (2014). How to combine term clumping and technology roadmapping for newly emerging science & technology competitive intelligence: “Problem & solution” pattern based semantic TRIZ tool and case study. Scientometrics, 101(2), 1375–1389.

10. Yoon, J., & Kim, K. (2012a). Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics, 90(2), 445–461.

11. Yoon, B., Park, I., &Coh, B. Y. (2014). Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining. Technological Forecasting and Social Change, 86, 287–303.

12. Korobkin D.M., Gordeev N.A., Fomenkov S.A., Dykov M.A. Metodvyyavleniyapatentnyhtrendovnaosnoveopisanijtekhnicheskihfunkcij. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. № 5 (215). S. 56-60.

13. Korobkin D.M., Fomenkov S.A., Kolesnikov S.G., Al'-Hadsha F.A.H. Sintezianalizfizicheskihprincipovdejstviyatekhnicheskihsistem s ispol'zovaniemsetej Petri. IzvestiyaVolgogradskogogosudarstvennogotekhnicheskogouniversiteta. 2018. № 8 (218). S. 83-88.

Fomenkova Marina Alexandrovna

Email: mfa92@yandex.ru

Volgograd State Technical University

Volgograd, Russian Federation

Korobkin Dmitry Mikhailovich
Candidate of Technical Sciences
Email: dkorobkin80@mail.ru

Volgograd State Technical University

Volgograd, Russian Federation

Fomenkov Sergey Alekseevich
Doctor of Technical Sciences
Email: saf550@yandex.ru

Volgograd State Technical University

Volgograd, Russian Federation

Kolesnikov Sergey Grigorievich

Email: sk375@bk.ru

Volgograd State Technical University

Volgograd, Russian Federation

Keywords: technological opportunities, natural language processing, sao, patents

For citation: Fomenkova M.A., Korobkin D.M., Fomenkov S.A., Kolesnikov S.G. METHOD OF ANALYSIS OF INNOVATIVE TRENDS BASED ON PATENT CORPUS. Modeling, Optimization and Information Technology. 2019;7(2). URL: https://moit.vivt.ru/wp-content/uploads/2019/05/FomenkovaSoavtori_2_19_1.pdf DOI: 10.26102/2310-6018/2019.25.2.018 (In Russ).

546

Full text in PDF

Published 30.06.2019