ПРОГНОЗИРОВАНИЕ ВРЕМЕННЫХ РЯДОВ ПОСРЕДСТВОМ ПРИВЯЗКИ СОБЫТИЙ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

FORECASTING TIME SERIES USING EVENT BINDING

Kolesnikov I.N. 

UDC 004.855.5
DOI: 10.26102/2310-6018/2019.27.4.039

  • Abstract
  • List of references
  • About authors

This article discusses the concept of modification of the time series analysis method, focused on integration with clustering methods in real-time training mode. Various methods of forecasting time series and machine learning are analyzed. The method described in the article predicts the behavior of the time series based on large data obtained from various sources and associated with existing transactions in the time series. This approach makes it possible to find the dependence of changes in certain indicators of the considered systems depending on various events. The performed research offers the concept of automated system training in real time with the possibility of further software implementation. The concept under consideration allows you to build forecasts for any time series, depending on various events, news and data that are in the public domain. An approach is proposed that links events to a transaction chart. The advantage of this approach is the ability to find various dependencies between events and various changes in indicators, for example: prices on exchanges, values of social indicators and many others.

1. Halafyan A.A. STATISTICA 6. Statistical analysis of data. M .: Binom. 2010:512.

2. Trofimov P.Yu., Noskov V.Yu. Forecasting time series by the ARIMA method. Heat engineering and computer science in education, science and production: a collection of reports of the VI All-Russian Scientific and Practical Conference of students, graduate students and young scientists (TIM'2017) with international 2017:260–262.

3. Bezruchko V.P., Smirnov D.A. Mathematical modeling of chaotic time series Saratov: State Scientific Center «College». 2005:532.

4. Manyika J., Chui M., Brown B. Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute, 2011:156.

5. Shmoilova R.A. General theory of statistics: Textbook. M.: Finance and Statistics. 2008:296.

6. Zamyatin A.V. Introduction to Mining. Tutorial. 2016:120.

7. Time series analysis. Electronic textbook on statistics. [Electronic resource] StatSoft - Moscow, 2009. Access mode: http://statsoft.ru/home/textbook/modules/sttimser.html.

8. Cao L., Soofi A. Nonlinear deterministic forecasting of daily dollar exchange rates. International journal of forecasting. 1999;15:421−430.

9. Meese R., Rogoff K. Empirical exchange rate models of the seventies: do they fit out-ofsample? Journal of international economics. 1983;14:3−24.

Kolesnikov Ilya Nikolaevich

Email: iljakolesnikoff@yandex.ru

Penza State University
OOO «KSK technology»

Penza, Russian Federation

Keywords: data analysis, forecasting, time series, big data, cluster analysis, data mining

For citation: Kolesnikov I.N. FORECASTING TIME SERIES USING EVENT BINDING. Modeling, Optimization and Information Technology. 2019;7(4). URL: https://moit.vivt.ru/wp-content/uploads/2019/11/Kolesnikov_4_19_1.pdf DOI: 10.26102/2310-6018/2019.27.4.039 (In Russ).

611

Full text in PDF

Published 31.12.2019