ФОРМИРОВАНИЕ ИНДИВИДУАЛЬНОГО ГРАФИКА ИЗУЧЕНИЯ МАТЕРИАЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ В ЭЛЕКТРОННОЙ СРЕДЕ В УСЛОВИЯХ ОГРАНИЧЕННОГО ВРЕМЕНИ ОБУЧЕНИЯ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

FORMATION OF AN INDIVIDUAL SCHEDULE FOR STUDYING THE MATERIALS OF THE DISCIPLINE IN AN ELECTRONIC ENVIRONMENT IN A LIMITED TIME OF TRAINING

idAnikieva M.A.

UDC 004.85
DOI: 10.26102/2310-6018/2019.27.4.023

  • Abstract
  • List of references
  • About authors

The article presents the methodology for personalizing the schedule in the electronic educational environment for studying educational materials in the framework of the academic discipline. To solve this problem, approaches to personalization of training used in e-learning are considered. The central aspect of the study was the ability to effectively use the time allotted for study, which is especially important when studying at the university, according to the general curriculum. Factors that require an individual training schedule have been identified. These include the various initial preparedness of the student, personal qualities, different approaches of students to the organization of their work. The relationship of these factors with the student’s pace was noted and a functional diagram of the process of adaptive management of student learning activities was developed. The proposed method involves a dynamic change in the requirements for the level of development of educational material, depending on the current achievements of the student. Studying the educational material even at a level lower than planned will give the student a holistic view of the subject area being studied. Analysis of the results of practical application of the method in an electronic educational course on the Moodle platform shows that students in the allotted time for training in General master the entire program of the discipline.

1. Pravitel'stvo Rossiyskoy Federatsii. Postanovleniye Pravitel'stva RF ot 23.05.2015 N 497 «O Federal'noy programme razvitiya obrazovaniya na 2016 - 2020 gody»; 2015 g. 2015 g. 23 maya. Dostupno po adresu: URL: https://base.garant.ru/71044750 .

2. Strategiya razvitiya otrasli informatsionnykh tekhnologiy v RF na 2014–2020 g.g. i na perspektivu do 2025 g .: Rasporyazheniye Pravitel'stva RF ot 1.11.2013. № 2036 – r; 2013 [tsitiruyetsya 16 avgusta 2017 g.]. Dostupno po adresu: URL: http://docs.cntd.ru/document/499055616

3. Shershneva V.A., Shkerina L.V., Sidorov V.N., Sidorova T.V., Safonov K.V. Contemporary didactics in higher education in Russia. European Journal of Contemporary Education 2016;3(17):357–67. https://doi.org/10.13187/ejced.2016.17.357.

4. Brusilovsky P. Adaptive and Intelligent Web-based Educational Systems. International Journal of Artificial Intelligence in Education 2003;13:156–69. Available from: URL: https://telearn.archives-ouvertes.fr/hal-00197315/.

5. Dorrer A.G., Ivanilova T.N.. Modelirovaniye interaktivnogo adaptivnogo obuchayushchego kursa. Sovremennyye problemy nauki i obrazovaniya 2007; (5): 1-8. Dostupno s: URL: https://elibrary.ru/item.asp?id=9925451.

6. Klašnja-Milićević A., Vesin B., Ivanović M., Budimac Z., Jain L.C. E-Learning Systems: Intelligent Techniques for Personalization. Switzerland: Springer; 2017. Available from: URL: https://link.springer.com/book/10.1007%2F978-3-319-41163-7.

7. Arzamastsev A.A., Kitayevskaya TY.U. Optimal'noye proyektirovaniye i povysheniye effektivnosti obucheniya v sisteme vysshego obrazovaniya: Postanovka zadach i obobshchennyy algoritm resheniya. Vestnik TGU 1999;4(4):485-488. Dostupno s: URL: https://elibrary.ru/item.asp?id=16389344.

8. Tsibul'skiy G.M., Vaynshteyn YU.V., Yesin R.V. Razrabotka adaptivnykh elektronnykh obuchayushchikh kursov v srede LMS MOODLE: Monografiya. Krasnoyarsk: Sib. feder. un-t; 2018 [tsitiruyetsya s 2019 po 28 oktyabrya]. Dostupno po adresu: URL: http://Lib3.sfu-kras.ru/ft/LIB2/ELIB/u004/i-222439.pdf.

9. Pakhunov A.V. Printsipy sozdaniya uchebnogo kursa s uchetom individualizatsiyey trayektorii obucheniya. Initsiativy XXI veka 2016;(2):19-22. Dostupno s: URL: https://elibrary.ru/item.asp?id=26488880.

10. Benhamdi S., Babouri A., Chiky R. Personalized recommender system for e-Learning environment. Educ Inf Technol 2017;22(4):1455–77. https://doi.org/10.1007/s10639-016- 9504-y.

11. Sweta S., Lal K. Personalized Adaptive Learner Model in E-Learning System Using FCM and Fuzzy Inference System. Int. J. Fuzzy Syst. 2017;19(4):1249–60. https://doi.org/10.1007/s40815-017-0309-y.

12. Christudas B.C.L., Kirubakaran E., Thangaiah P.R.J. An evolutionary approach for personalization of content delivery in e-learning systems based on learner behavior forcing compatibility of learning materials. Telematics and Informatics 2018;35(3):520–33. https://doi.org/10.1016/j.tele.2017.02.004.

13. Chrysoulas C., Fasli M. Building an Adaptive E-Learning System. In: 9th International Conference on Computer Supported Education (CSEDU 2017): SCITEPRESS; 2018: 375– 82. Available from: URL: http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006326103750382.

14. Drissi S., Amirat A. An Adaptive E-Learning System based on Student’s Learning Styles. International Journal of Distance Education Technologies 2016;14(3):34–51. https://doi.org/10.4018/IJDET.2016070103.

15. Wan S., Niu Z. An e-learning recommendation approach based on the self-organization of learning resource. Knowledge-Based Systems. 2018;160:71–87. https://doi.org/10.1016/j.knosys.2018.06.014.

16. Athanasiadis C., Hortal E., Koutsoukos D., Lens C.Z., Asteriadis S. Personalized, Affect and Performance-driven Computer-based Learning. In: 9th International Conference on Computer Supported Education (CSEDU 2017): SCITEPRESS; 2018:132–9 [cited 2017 May 19]. Available from: URL: http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006331201320139.

17. Chang T.-W., Kurcz J., El-Bishouty M.M., Graf S., Kinshuk. Adaptive Recommendations to Students Based on Working Memory Capacity. In: 2014 IEEE 14th International Conference on Advanced Learning Technologies (ICALT 2014): Athens, Greece, 7-10 July 2014. Piscataway NJ: IEEE; 2014:57–61.

18. Bobadilla J., Serradilla F., Hernando A. Collaborative filtering adapted to recommender systems of e-learning. Knowledge-Based Systems 2009;22(4):261–5. https://doi.org/10.1016/j.knosys.2009.01.008.

19. Peña-Ayala A., Sossa H., Méndez I. Activity theory as a framework for building adaptive e-learning systems: A case to provide empirical evidence. Computers in Human Behavior 2014;30:131–45. https://doi.org/10.1016/j.chb.2013.07.057.

20. Atanov G.A. Deyatel'nostnyy podkhod v obuchenii. Donetsk: YEAI-press; 2001.

21. . Shadrikov V.D. Psikhologiya deyatel'nosti cheloveka. M .: Izd-vo «Institut psikhologii RAN»; 2013. (Dostizheniya v psikhologii) [tsitiruyetsya s 2019 g. po 28 oktyabrya]. Dostupno s: URL: https://elibrary.ru/item.asp?id=23734352.

22. Schmidt H.G. Problem-based learning: Rationale and description. Medical Education 1983;17(1):11–6. https://doi.org/10.1111/j.1365-2923.1983.tb01086.x.

23. Hmelo-Silver C.E. Problem-Based Learning: What and How Do Students Learn? Educ Psychol Rev 2004;16(3):235–66. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3.

24. Metcalfe J., Kornell N. A Region of Proximal Learning model of study time allocation. Journal of Memory and Language 2005;52(4):463–77. https://doi.org/10.1016/j.jml.2004.12.001.

25. Tullis J.G., Benjamin A.S. On the effectiveness of self-paced learning. Journal of Memory and Language 2011;64(2):109–18. https://doi.org/10.1016/j.jml.2010.11.002.

26. Sanchez Nigenda R., Maya Padrón C., Martínez-Salazar I., Torres-Guerrero F. Design and evaluation of planning and mathematical models for generating learning paths. Computational Intelligence 2018;34(3):821–38. https://doi.org/10.1111/coin.12134.

27. Garrido A., Morales L., Serina I. On the use of case-based planning for e-learning personalization. Expert Systems with Applications. 2016;60:1–15. https://doi.org/10.1016/j.eswa.2016.04.030.

28. Zaslavskaya, O. YU .: Kravets, O. YA. Osobennosti postroyeniya individual'noy trayektorii obucheniya informatike na osnove dinamicheskoy integral'noy otsenki urovnya znaniy. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Informatizatsiya obrazovaniya 2010;(4):47-51. Dostupno s: URL: https://elibrary.ru/item.asp?id=15249115.

29. Garrido A., Fernández S., Morales L., Onaindía E., Borrajo D., Castillo L. On the automatic compilation of e-learning models to planning. The Knowledge Engineering Review 2013;28(02):121–36. https://doi.org/10.1017/S0269888912000380.

30. Gayathri R., Uma V. Ontology based knowledge representation technique, domain modeling languages and planners for robotic path planning: A survey. ICT Express 2018; 4(2):69–74. https://doi.org/10.1016/j.icte.2018.04.008.

31. Tsortanidou X., Karagiannidis C., Koumpis A. Adaptive Educational Hypermedia Systems based on Learning Styles: The Case of Adaptation Rules. Int. J. Emerg. Technol. Learn. 2017;12(05):150. https://doi.org/10.3991/ijet.v12i05.6967.

32. Somyürek S. The new trends in adaptive educational hypermedia systems. IRRODL 2015; 16(1). https://doi.org/10.19173/irrodl.v16i1.1946

33. Blazheska-Tabakovska N., Ivanovic M., Klašnja-Milićević A., Ivkovic J. Comparison of ELearning Personalization Systems: Protus and PLeMSys. Int. J. Emerg. Technol. Learn. 2017;12(01):57–70. https://doi.org/10.3991/ijet.v12i01.6085.

34. Anikieva M.A. Shkala urovney osvoyeniya uchebnoy informatsii. V kn .: Informatizatsiya obrazovaniya i metodika elektronnogo obucheniya: Materialy III Mezhdunarodnoy nauchnoy konferentsii (Krasnoyarsk, 24–27 sentyabrya 2019 g.): v 2 ch .; Chast' 1. Krasnoyarsk: Sib. feder. un-t; 2019:20-5.

35. Shershneva V., Vainshtein Y., Kochetkova T. Adaptive system of web-based teaching. PSTA 2018; 9(4):159–77. https://doi.org/10.25209/2079-3316-2018-9-4-159-177.

36. Atanov G.A., Pustynnikova I.N. Obucheniye i iskusstvennyy intellekt, ili osnovy sovremennoy didaktiki vysshey shkoly. Donetsk: Izd-vo DOU; 2002 [tsitiruyetsya s 2019 g. po 28 oktyabrya]. Dostupno s: URL: https://ru.b-ok.cc/book/3073320/3fc5d0 .

37. Karpenko M.P. Problema izmereniya znaniy i obrazovatel'nyye tekhnologii. Zhurnal prakticheskogo psikhologa 1997 [tsitiruyetsya s 9 fevralya 2019 goda];(4):74-9. Dostupno s: URL: http://www.allrus.info/main.php?ID=216065&arc_new=1.

38. Tazetdinov A.D. Tekhnologiya strukturirovaniya i vizualizatsii uchebnoy informatsii v repetitorskikh sistemakh. Informatsionno-upravlyayushchiye sistemy. Informatsionnyye tekhnologii i obrazovaniye 2009 [tsit. 2019, 28 oktyabrya];(1):60-5. Dostupno s: URL: https://elibrary.ru/item.asp?id=12291619

39. Krasnykh V.V. Osnovy psikholingvistiki i teorii kommunikatsii: Lektsionnyy kurs. M .: ITDGK «Gnozis»; 2001 [tsitiruyetsya s 2019 g. po 28 oktyabrya]. Dostupno po adresu: URL: https://docplayer.ru/36414914-Osnovy-psiholingvistiki-i-teorii-kommunikacii.html.

40. Anikieva M.A. Metodika rascheta vremeni dlya osvoyeniya uchebnogo materiala. Mezhdunarodnyy zhurnal perspektivnykh issledovaniy 2018;8(2):74-90. https://doi.org/10.12731/2227-930X-2018-2-74-90.

Anikieva Marina Anatolievna

Email: MAnikieva@sfu-kras.ru

ORCID |

Federal State Autonomous Educational Institution of Higher Education "Siberian Federal University"

Krasnoyarsk, Russian Federation

Keywords: e-learning,, e-learning system, personalized learning, individual schedule, the level of mastering the educational material, academic discipline, activity of the trainee

For citation: Anikieva M.A. FORMATION OF AN INDIVIDUAL SCHEDULE FOR STUDYING THE MATERIALS OF THE DISCIPLINE IN AN ELECTRONIC ENVIRONMENT IN A LIMITED TIME OF TRAINING. Modeling, Optimization and Information Technology. 2019;7(4). URL: https://moit.vivt.ru/wp-content/uploads/2019/11/Anikieva_4_19_1.pdf DOI: 10.26102/2310-6018/2019.27.4.023 (In Russ).

714

Full text in PDF

Published 31.12.2019