Решение задачи оптимизации регрессионного тестирования с использованием нейросетевого подхода
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Neural network based solution for regression testing optimization

Danilov A.D.,  Mugatina V.M. 

UDC 004.054
DOI: 10.26102/2310-6018/2020.28.1.032

  • Abstract
  • List of references
  • About authors

Regression testing is important task of retesting software systems after changes in the code of product to ensure that changes do not influence previously implemented functionality. Regression testing is run after a new version of software has been developed. Usually only limited subset of test cases is executed for a new version of software through restricted resources. This shows the problem of selection the most important regression test cases. To cope with limited resources, different regression testing techniques was developed to reduce the number of test cases to be executed. One of these techniques is test case prioritization based on neural network model. Such mechanism can collect data about code changes from Version Control System and use it as inputs for neural network. The outputs for such neural network model are regression tests' execution results. Groups of regression tests can be united by functionality under the test. Neural network model can be trained on real results during the phase of software developing. Trained neural network can detect the most important test cases for execution after each change in product code. Such technique can be used to guide the focus of the testing efforts.

1. Danilov A.D., Mugatina V.M. Verification and software testing of complex products based on neural network models, The Bulletin of Voronezh State Technical University, 2016;12(6):62-67.

2. Danilov A.D., Fedorov A.I. Hierarchical structure of software testing process, The Bulletin of Voronezh State Technical University, 2014;10(3-1):18-21.

3. Danilov A.D., Samotsvet D.A., Mugatina V.M. Using neural network models in the quality management system for the software defect prediction. IOP conference series: Materials science and engineering. International Workshop "Advanced Technologies in Material Science, Mechanical and Automation Engineering”. MIP: Engineering. 2019

4. Danilov A.D., Mugatina V.M. Application of artificial neural networks for software testing optimization, The Bulletin of Voronezh State Technical University, 2018;14 (2):7-14.

Danilov Aleksandr Dmitrievich
Doctor of Technical Sciences, Professor
Email: ivanilovatn@gmail.com

Volgograd State Technical University

Voronezh, Russian Federation

Mugatina Varvara Mikhailovich

Email: varvaramugatina@gmail.com

Volgograd State Technical University

Voronezh, Russian Federation

Keywords: software quality assurance, software verification, artificial neural network, regression testing

For citation: Danilov A.D., Mugatina V.M. Neural network based solution for regression testing optimization. Modeling, Optimization and Information Technology. 2020;8(1). URL: https://moit.vivt.ru/wp-content/uploads/2020/02/DanilovMugatina_1_20_1.pdf DOI: 10.26102/2310-6018/2020.28.1.032 (In Russ).

404

Full text in PDF

Published 31.03.2020