Способ противодействия деструктивным электромагнитным воздействиям, основанный на дополнительной модуляции с применением вейвлет-преобразования в сетях связи специального назначения
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

METHOD OF COUNTERING DESTRUCTIVE ELECTROMAGNETIC INFLUENCES, BASED ON ADDITIONAL MODULATION WITH APPLICATION OF WAVELET TRANSFORMATION IN SPECIAL APPLICATION NETWORKS

Gilev I.V.,  Kanavin S.V.,  Popov A.V.,  Khokhlov N.S. 

UDC 654.16
DOI: 10.26102/2310-6018/2020.29.2.039

  • Abstract
  • List of references
  • About authors

The article discusses a method of counteracting destructive electromagnetic effects, based on the transfer of the signal spectrum using wavelet transforms in special communication networks (SS SN), operating on the basis of the WIMAX standard for mobile broadband access. A Gaussian bipolar pulse is selected as a model of destructive electromagnetic influence that affects the operation of a special purpose communication network. When this type of interference is affected by a WIMAX system signal, the normal operation of the CC SN is disrupted. The MHAT wavelet was chosen as the modulating function, since it is described in the time-frequency half-plane and its parameters depend on certain coefficients of the scaling factor and the time shift. Thus, it is possible to change the parameters of the modulated signal by changing the coefficients of the wavelet function by which it is modulated. MHAT wavelet, obtained as a result of double differentiation of the Gauss function. This method finds its application primarily due to the fact that the wavelet operates in the time-frequency half-plane and its parameters depend on certain coefficients (scaling factor and time shift). Thus, it is possible to change the parameters of the modulated signal by changing the coefficients of the wavelet function by which it is modulated. The results of this method are the transfer of the spectrum of the WIMAX signal to another frequency band, where the SS SN also functions by modulating the wavelet function, as well as increasing its power and expanding the spectrum.

1. About the connection: fed. Law dated 07.07.2003 No. 126-FZ. Available at: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=LAW&n=284635&fld=134 &dst=1000000001,0&rnd=0.051152897698079736#08312366978414549 (accessed 03.06.2020)

2. Gilev I.V. A model for counteracting the destruction of information under destructive electromagnetic influences in special-purpose radio communication systems based on fuzzy expert systems. The bulletin of Voronezh Institute of the Ministry of Internal Affairs of Russia. 2020;1:158-168.

3. Khokhlov N.S., Panychev S.N., Kanavin S.V., Samotsvet N.A., Gilev I.V. Methodology for the quantitative assessment of the influence of radio interference and the signal of electronic devices on the indicators of electronic protection. Vestnik of Mari State Technical University. Series «Radio Engineering and Infocommunication Systems. 2019;1:22-30.

4. Khokhlov N.S., Gilev I.V., Kanavin S.V. Typical models of destructive broadband and ultra-wideband signals affecting special-purpose communication systems. Bulletin of the Voronezh Institute of the Ministry of Internal Affairs of Russia. 2019;1:91-101.

5. Semenov V.I., Mikheev K.G., Shurbin A.K., Mikheev G.M. Designing orthogonal wavelets in the frequency domain for multi-scale signal analysis. Chemical physics and mesoscopy. 2018;2:230-238.

6. Singh P. Wavelet Transform in Image Processing: Denoising, Segmentation and Compression of Digital Images / P. Singh // International Journal of Scientific Research in Science, Engineering and Technology. 2016;2:1137-1140.

7. Gilev I.V., Kanavin S.V., Popov A.V. Methods for the formation of elements of a complex to combat information destruction in special-purpose communication systems under destructive broadband influences. Federal Service for Intellectual Property: Certificate No. 2020611635; registered in the Register of computer programs of February 05, 2020

8. Kuzovnikov A.V., Deryabin A.L., Shatrov V.A., Bazhenov V.Yu. Evaluation of the effectiveness of the expansion of the bandwidth of signals modulated by various types of wavelet functions. Reshetnevskiye chteniya: sbornik materialov Mezhdunarodnoy nauchnoprakticheskoy konferentsii. 2010;1:393-394. (In Russ)

9. Egorova E.V., Aksyaitov M.Kh., Rybakov A.N. Methods for improving the efficiency of wavelet transforms in the processing, compression and restoration of radio signals: Monograph. Tambov: Yukom. 2019:84.

10. Kanavin S.V., Lukyanov A.S. Prospects for the use of mobile broadband access systems in mobile radio networks based on Mobile WIMAX and LTE standards. Vestnik Voronezhskogo instituta vysokih tekhnologij. 2016;1:79-82. (In Russ)

11. Lukyanov A.S., Gilev I.V., Popov A.V. Improving the noise immunity of communication systems and computer networks using orthogonal wavelet functions. Bor'ba s kiberprestupnost'yu v usloviyakh razvitiya tsifrovogo obshchestva: sbornik statey Mezhdunarodnoy konferentsii. 2019;1:11-14. (In Russ)

12. Xhaja B., Kalluci E., Nikolla L. Wavelet Transform In ECG Signal Processing. European Scientific Journal. 2015;11(12):305-312.

13. Vityazev V.V. Wavelet Time Series Analysis: A Training Manual. St. Petersburg: Publishing House of St. Petersburg University. 2001:58.

14. Rashich A.V. WiMAX Wireless Networks: A Tutorial. St. Petersburg: Publishing House of the Polytechnic University. 2011:179

15. . Khokhlov N. S., Kanavin S. V., Gilev I. V. Use of the multi-sector MIMO antenna system as an element of the complex of means of counteracting destructive electromagnetic influences. Bulletin of the Voronezh Institute of the Ministry of Internal Affairs of Russia. 2019;4:126-136.

16. Gilev I., Kanavin S. Modeling the Destructive Effect of Interference on Mobile Networks, Using the 3G Standard as an Example, Using a Noise Generator. Bulletin of the Lipetsk State Technical University. 1st International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). Lipetsk: 2019:407-410. DOI: 10.1109 / SUMMA48161.2019.8947533.

17. Gilev I.V., Kanavin S.V. Modeling of the WIMAX standard mobile broadband access system in the conditions of multipath signal propagation. Bulletin of the Voronezh Institute of the Ministry of Internal Affairs of Russia. 2019;2:181-191.

18. Tomashevich V.S. The study of the characteristics of the reverse channel in wireless communication networks. Problems of Informatics 2009;2:4-9.

Gilev Igor Vladimirovich

Email: gileviv@bk.ru

Voronezh Institute of the Ministry of Internal Affairs of Russia

Voronezh, Russian Federation

Kanavin Sergey Vladimirovich
candidate of technical sciences
Email: sergejj-kanavin@rambler.ru

Voronezh Institute of the Ministry of Internal Affairs of Russia

Voronezh, Russian Federation

Popov Alexey Vyacheslavovich

Email: Alex_std_ex@mail.ru

Voronezh Institute of the Ministry of Internal Affairs of Russia

Voronezh, Russian Federation

Khokhlov Nikolay Stepanovich
Doctor of Technical Sciences, Professor
Email: nikolayhohlov@rambler.ru

Voronezh Institute of the Ministry of Internal Affairs of Russia

Voronezh, Russian Federation

Keywords: broadband communication system, wimax communication systems, modeling of functioning under conditions of destructive electromagneti, а method of counteracting destructive electromagnetic influences using, mhat-wavelet

For citation: Gilev I.V., Kanavin S.V., Popov A.V., Khokhlov N.S. METHOD OF COUNTERING DESTRUCTIVE ELECTROMAGNETIC INFLUENCES, BASED ON ADDITIONAL MODULATION WITH APPLICATION OF WAVELET TRANSFORMATION IN SPECIAL APPLICATION NETWORKS. Modeling, Optimization and Information Technology. 2020;8(2). URL: https://moit.vivt.ru/wp-content/uploads/2020/05/GilevSoavtors_2_20_1.pdf DOI: 10.26102/2310-6018/2020.29.2.039 (In Russ).

691

Full text in PDF

Published 30.06.2020