Классификационный подход на основе комбинации глубоких нейронных сетей для прогнозирования отказов сложных многообъектных систем
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

А classification approach based on a combination of deep neural networks for predicting failures of complex multi-object systems

Sai W.C.,  Shcherbakov M.V. 

UDC 004.02
DOI: 10.26102/2310-6018/2020.29.2.037

  • Abstract
  • List of references
  • About authors

Scientific and technical progress has contributed to a rapid increase in the complexity of systems and their functions, which is especially characteristic of various fields of modern industry. Here, the cost of failure of equipment can be very high and sometimes lead to invaluable losses associated with the loss of life. Maintenance of such systems requires high material costs, but still does not exclude the possibility of failures. This indicates that the problem of ensuring the reliability of complex multiobject systems is still far from being solved. In this regard, the task of ensuring reliable operation of systems while minimizing the cost of their maintenance and maintenance is now in the first place. The solution of this problem is impossible without the development and implementation of intelligent systems that perform the functions of predictive analytics and predictive maintenance. This article proposes a hybrid neural network model for predicting failures of complex multi-object systems based on the classification approach, aimed at improving the operational reliability of equipment at minimal cost. The results of computational experiments confirming the high efficiency of the proposed solution are presented.

1. Sai Van Cuong, Shсherbakov M. V. A data-driven method for remaining useful life prediction of multiple-component systems. Сaspian journal: management and high technologies. 2019;(1):33-44

2. Sai Van Cuong, Shсherbakov M. V. Failure prediction of complex multiple-component systems based on a combination of neural networks: ways to improve the accuracy of forecasting. Сaspian journal: management and high technologies. 2020;(1):16.

3. Sai Van Cuong. Deep neural networks for predictive maintenance. Modeling, Optimization and Information Technology. 2019;4 (27):11.

4. Yan, M., Wang, X., Wang, B., Chang, M., Muhammad, I. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model. ISA transactions. 2019.

5. Chen, Z., Cao, S., Mao, Z. Remaining useful life estimation of aircraft engines using a modified similarity and supporting vector machine (SVM) approach. Energies. 2018);11(1):28.

6. Patil, S., Patil, A., Handikherkar, V., Desai, S., Phalle, V. M., Kazi, F. S. Remaining Useful Life (RUL) Prediction of Rolling Element Bearing Using Random Forest and Gradient Boosting Technique. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection. 2018.

7. Li, X., Ding, Q., Sun, J. Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering & System Safety. 2018;172:1-11.

8. Zheng, S., Ristovski, K., Farahat, A., Gupta, C.: Long Short-Term Memory Net-work for Remaining Useful Life estimation. In Proceedings of the 2017 IEEE In-ternational Conference on Prognostics and Health Management (ICPHM), Dallas,TX, USA, 19–21 June, 88-95 (2017)

9. Python. Available at: https://www.python.org/ свободный. (accessed 25.02.2020).

10. Keras. Available at: https://keras.io, свободный. (accessed 30.02.2020).

11. TensorFlow. Availabe at: https://www.tensorflow.org/. (accessed 30.02.2020).

12. Keras Tuner. Available at: https://keras-team.github.io/keras-tuner/ (accessed 15.02.2020).

Sai Wang Cuong

Email: svcuonghvktqs@gmail.com

Volgograd State Technical University

Volgograd, Russian Federation

Shcherbakov Maxim Vladimirovich
Doctor of Technical Sciences
Email: maxim.shcherbakov@gmail.com

Volgograd State Technical University

Volgograd, Russian Federation

Keywords: forecasting failures, data-driven methods, deep neural networks, lstm, cnn

For citation: Sai W.C., Shcherbakov M.V. А classification approach based on a combination of deep neural networks for predicting failures of complex multi-object systems. Modeling, Optimization and Information Technology. 2020;8(2). URL: https://moit.vivt.ru/wp-content/uploads/2020/05/SaiShcherbakov_2_20_1.pdf DOI: 10.26102/2310-6018/2020.29.2.037 (In Russ).

969

Full text in PDF

Published 30.06.2020