Метод совместной калибровки инерциальных датчиков беспилотного летательного аппарата с применением нейронных сетей
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Method for joint calibration of inertial sensors of an unmanned aerial vehicle using neural networks

idSmirnov V.A., Pravidlo M.N.,  Snedkov A.B. 

UDC 629.7.05
DOI: 10.26102/2310-6018/2020.30.3.007

  • Abstract
  • List of references
  • About authors

The article deals with methods and technical means of control and testing samples of information-measuring and control systems intended for installation on unmanned aerial vehicles. The principles of creation of control systems built on inertial sensors of various types are considered. Shortcomings are revealed in the use of traditional methods of development based on direct readings from sensors with the help of software. The design of modern inertial sensors with indication of their components and parts is described. The technology of creating a test bench for evaluating the accuracy of sensor calibration is defined. Formulas on which the work of the test bench is based on its geometry are given. Specifies formulas used in the traditional method of calculating values from inertial sensors. Describes the process of learning the neural network to compensate for the disadvantages inherent in a traditional calibration method. The experiment of comparing actual values with the values obtained during the calculations is demonstrated. The traditional method of joint inertial sensor calibration is compared with the method based on neural networks. The advantages of using this method of inertial sensor calibration under the requirements of modern control systems are determined.

1. Belyavskii A.O., Tomashevich S.I. Sintez adaptivnoi sistemy upravleniya kvadrokopterom metodom passifikatsii. Upravlenie bol'shimi sistemami. 2016;63:155-181.

2. Yushchenko A.S., Lebedev K.R., Zabikhafar Kh. Sistema upravleniya kvadrokopterom na osnove adaptivnoi neironnoi seti. Nauka i obrazovanie: Nauchnoe izdanie MGTU im. N.Eh. Baumana. 2017;7:262-277.

3. Andropov S.S., Girik A.V., Bud'ko M.Yu., Bud'ko M.B. Stabilizatsiya bespilotnogo letatel'nogo apparata na osnove neirosetevogo regulyatora. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki. 2016;5:796-800.

4. Wachlin J., Ward M., Costello M. In-canopy sensors for state estimation of precision guided airdrop systems. Aerospace Science and Technology. USA. 2019.

5. Gomez C., Hagon J., Gregory B. Using Low-Cost UAVs for Environmental Monitoring, Mapping and Modeling: Examples from the Coastal Zone. Coastal Management. UK. 2019.

6. Beloglazov D.A., Kobersi I.S., Kosenko E.Yu. Analiz osobennostei prakticheskogo ispol'zovaniya regulyatorov sistem avtomaticheskogo upravleniya kvadrokopterami. Inzhenernyi vestnik Dona. 2015;3.

7. Green D. Remote sensing, GIS, the geospatial technologies, and Unmanned Airborne Vehicles at Aberdeen University. Scottish Geographical Journal. UK. 2019.

8. Kazakevich A.S. Akselerometry Analog Devices – ustroistvo i primenenie. Komponenty i tekhnologii. 2007; 5.

9. Ivoilov A.Yu. O primenenii MEHMS-datchikov pri razrabotke sistemy avtomaticheskoi stabilizatsii dvukhkolesnogo robota. Sbornik nauchnykh trudov NGTU. 2017;3(89):32-51.

10. Kaplun D.I., Ezhov S.N. Osobennosti realizatsii tsifrovoi fil'tratsii s izmeneniem chastoty diskretizatsii. Sovremennye problemy nauki i obrazovaniya. 2012;6.

Smirnov Vladimir A.

Email: smirnov007@inbox.ru

ORCID |

Federal State Budgetary Educational Institution Of Higher Education "Mirea - Russian Technological University"

Moscow, Russian Federation

Pravidlo Mikhail N.
Doctor of Technical Sciences, Professor

Joint Stock Company "State Machine-Building Design Bureau "Vympel" Named After I.I. Toropova"

Moscow, Russian Federation

Snedkov Alexander B.
Candidate Of Technical Sciences, Associate Professor
Email: snedkov@mirea.ru

Federal State Budgetary Educational Institution Of Higher Education "MIREA - Russian Technological University"

Moscow, Russian Federation

Keywords: sensors, gyroscope, accelerometer, calibration, control system

For citation: Smirnov V.A., Pravidlo M.N., Snedkov A.B. Method for joint calibration of inertial sensors of an unmanned aerial vehicle using neural networks. Modeling, Optimization and Information Technology. 2020;8(3). URL: https://moit.vivt.ru/wp-content/uploads/2020/08/SmirnovSoavtors_3_20_1.pdf DOI: 10.26102/2310-6018/2020.30.3.007 (In Russ).

1439

Full text in PDF

Published 30.09.2020