Keywords: unmanned vehicle, smart city, functioning architecture, safety management system, local positioning, network models
Aspects of the safe functioning of unmanned vehicles in a smart city environment
UDC 004.032.2:681.518.3
DOI: 10.26102/2310-6018/2020.30.3.010
At present, unmanned vehicle (UV) to provide the accurate navigation under motion are in majority cases depended on GPS, what makes the access to the Network of importance for correct performance in the smart city environment. To implement the smart city conception, the search of alternative techniques of UV localization is vital, since in real conditions GPS signal may be either absent, or its accuracy may be found insufficient to move over a route or to implement maneuvers. One should note that there exist problems for putting in operation the UV technologies: ethical (confidentiality and trust) and cybersecurity. Since in the smart city environment all UVs are to be connected to the Network, then cybersecurity issues also require an additional attention. Cyber threats can provoke violations in both individual UVs and the transportation system as a whole. The paper emphasizes three main categories of UV program systems providing, correspondingly, sampling and processing data, planning, and control. An approach to the UV performance architecture is presented, based on the sampling and processing data, decision making, network and computational multi-level analytics. To increase the UV security in a smart city, the paper proposes to utilize a safety management system based on the factor analysis and risks calculation techniques. To increase the UV security in the part of unobstructed motion, local positioning network models are proposed enabling to work out motion schemes.
1. Thomopoulos, N., Givoni, M. The autonomous car – a blessing or a curse for the future of low carbon mobility? An exploration of likely vs. desirable outcomes. European Journal of Futures Research. 2015;3:14. Available by: https://link.springer.com/content/pdf/10.1007/s40309-015-0071-z.pdf. DOI: 10.1007/s40309-015-0071-z (accessed 15.08.2020).
2. Fagnant D.J., Kockelman K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice. 2015;77:167-181. DOI: 10.1016/j.tra.2015.04.003.
3. Carvalho G.P.S, Costa R.R. Localization of an Autonomous Rail-Guided Robot Using Particle Filter. IFAC-PapersOnLine. 2017;50(1):5642-5647. DOI: 10.1016/j.ifacol.2017.08.1112.
4. Cai G., Lin H., Kao S. Mobile Robot Localization using GPS, IMU and Visual Odometry. Proceedings of the 2019 International Automatic Control Conference (CACS). 2019;1-6. DOI: 10.1109/CACS47674.2019.9024731.
5. Forster C., Zhang Z., Gassner M., Werlberger M., Scaramuzza D. SVO: semi direct visual odometry for monocular and multicamera systems. IEEE Transactions on Robotics. 2017;33(2):249-265. DOI: 10.1109/TRO.2016.2623335.
6. Engel J., Stckler J., Cremers D. Large-scale direct SLAM with stereo cameras. Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015;1935–1942. DOI: 10.1109/IROS.2015.7353631.
7. Bar Hillel A., Lerner R., Levi D., Raz G. Recent progress in road and lane detection: a survey. Machine Vision and Applications. 2014;25:727-45. DOI: 10.1007/s00138-011- 0404-2.
8. Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A.C., Fei-Fei L. ImageNet large scale visual recognition challenge. International Journal of Computer Vision. 2015;115:211-252. DOI: 10.1007/s11263-015-0816-y.
9. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Standards. J3016_201806, SAE International. 2018.
10. Russell H.E.B., Harbott L.K., Nisky I., Pan S., Okamura A.M., Gerdes J.C. Motor learning affects car-to-driver handover in automated vehicles. Science Robotics. 2016:1(1). DOI: 10.1126/scirobotics.aah5682. 1
11. Anagnostopoulos С. Edge-centric inferential modeling & analytics. Journal of Network and Computer Applications. 2020;164:102696. DOI: 10.1016/j.jnca.2020.102696.
12. Petit J., Shladover S.E. Potential cyberattacks on automated vehicles. IEEE Transactions on Intelligent Transportation Systems. 2015;16(2):546–556. DOI: 10.1109/TITS.2014.2342271.
13. Lim H.S.M., Taeihagh A., Autonomous Vehicles for Smart and Sustainable Cities: An InDepth Exploration of Privacy and Cybersecurity Implications. Energies. 2018;11(5):1062. DOI: 10.3390/en11051062.
14. Kohler W.J., Colbert-Taylor A. Current law and potential legal issues ertaining to automated, autonomous and connected vehicles. Santa Clara High Technology Law Journal. 2014;31(1), 99.
15. Parkinson S., Ward P., Wilson K., Miller J. Cyber threats facing autonomous and connected vehicles: future challenges. IEEE Transactions on Intelligent Transportation Systems. 2017:18(11): 2898–2915. DOI: 10.1109/TITS.2017.2665968.
16. Von Solms R., Van Niekerk J. From information security to cybersecurity. Computers & Security. 2013;38:97-102. DOI: 10.1016/j.cose.2013.04.004
17. Fagnant D.J., Kockelman K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice. 2015;77:167–181. DOI: 10.1016/j.tra.2015.04.003.
18. Li C.-Y., Wang J.-H., Zhi Y.-R., Wang Z.-R., Gong J.-H. Simulation of the Chlorination Process Safety Management System Based on System Dynamics Approach. Procedia Engineering. 2018;211:332-342. DOI: 10.1016/j.proeng.2017.12.020.
19. Kalashnikov A., Sakrutina E. Safety management system and Significant Plants of Critical Information Infrastructure. IFAC-PapersOnLine. 2019;52(13):1391-1396. DOI: 10.1016/j.ifacol.2019.11.393.
20. Iskhakov A., Meshcheryakov R. Intelligent system of environment monitoring on the basis of a set of IoT-sensors. Proceedings of the 2019 International Siberian Conference on Control and Communications (SIBCON 2019). 2019;1-5. DOI: 10.1109/SIBCON.2019.8729628.
21. Choporov O.N., Nezhelsky E.R., Belonozhkin V.I., Parinova L.V. Development of the control system information risk of the organization. Informatsiya i bezopasnost’. 2018;21(3):290-295.
22. Kalashnikov A.O., Sakrutina E.A. A model of predicting risk potential of significant plants of critical information infrastructure. Informatsiya i bezopasnost’. 2018;21(4):465-470.
23. Abdulov A.V., Abramenkov A.N. Collision Avoidance by Communication for Autonomous Mobile Robots in Crowd. Proceedings of the 11th International Conference “Management of Large-Scale System Development” (MLSD). 2018;1-5. DOI: 10.1109/MLSD.2018.8551804.
24. Sand S., Dammann A., Mensing Ch. Position Estimation. Positioning in Wireless Communications Systems, Wiley Telecom, 2014. DOI: 10.1002/9781118694114.ch4.
25. Guss S.V. Private wireless mesh networks. Mathematical Structures and Modeling. 2016;4(40):102-115.
26. Promyslov V.G, Sakrutina E., Meshcheryakov R. Coherence Criterion for Security Architecture of Digital Control System. Proceedings 2019 International Russian Automation Conference (RusAutoCon). 2019;1-5. DOI: 10.1109/RUSAUTOCON.2019.8867615.
27. Abdulov A.V., Abramenkov A.N., Shevlyakov A.A. Visual Odometry Approaches to Autonomous Navigation for Multicopter Model in Virtual Indoor Environment. Advances in Systems Science and Applications. 2018;18(3):17-28. DOI: 10.25728/assa.2018.18.3.583.
Keywords: unmanned vehicle, smart city, functioning architecture, safety management system, local positioning, network models
For citation: Abdulov A.V., Abdulova (sakrutina) E.A. Aspects of the safe functioning of unmanned vehicles in a smart city environment. Modeling, Optimization and Information Technology. 2020;8(3). URL: https://moit.vivt.ru/wp-content/uploads/2020/08/AbdulovAbdulov%D0%B0_3_20_1.pdf DOI: 10.26102/2310-6018/2020.30.3.010 (In Russ).
Published 30.09.2020