Keywords: unmanned aerial vehicles, unmanned aviation systems, operation restrictions, scenarios for the use of unmanned aerial vehicles, multi-criteria optimization problem
Scenario for searching, detecting and extinguishing a fire in a forest area
UDC 629.7
DOI: 10.26102/2310-6018/2020.31.4.024
This article examines and describes the process of constructing an algorithm of actions - a scenario for searching, detecting and extinguishing a fire in a forest with unmanned aerial vehicles, developed at the initial stage when designing the operation of heterogeneous unmanned aerial systems in an automatic mode in order to optimize the solution of an urgent problem aimed at preserving flora and fauna, by the forces and means of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination of the Consequences of Natural Disasters. The developed scenario makes it possible to achieve the solution of this problem by the forces of a heterogeneous unmanned aircraft system. Based on the experience of units armed with and actively operating unmanned aerial vehicles, limitations for the considered simplified scenario have been developed and described. This scenario was investigated using a mathematical apparatus, namely, a multicriteria optimization problem was built, which allows calculating the optimal number of unmanned aerial vehicles used, the total time for examining and extinguishing a fire, and the cost costs associated with trees in areas of fire that have not been extinguished.
1. Cai G., Chen B.M., Lee T.H. Unmanned Rotorcraft Systems. Springer, 2011 Available from: https://www.springer.com/gp/book/9780857296344 [Accessed 10th October 2020].
2. Chueshev A.V., Melekhova O.N., Мещеряков Р.В. Сloud robotic platform on basis of fog computing approach. Lecture Notes in Computer Science. 2018. 11097 LNAI.
3. Hadad, Meirav; Kraus, Sarit et al. Group planning with time constraints Annals of mathematics and artificial intelligence, 2013;69(1):243-291.
4. Hu G., Tay W.P., Wen Y. Cloud robotics: architecture, challenges and applications IEEE Netw. IEEE, 2012;26(3):21–28.
5. Zhang, K., Niroui, F., Ficocelli, M., & Nejat, G. Robot Navigation of Environments with Unknown Rough Terrain Using deep Reinforcement Learning. 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). Available from:https://www.semanticscholar.org/paper/Robot-Navigation-of-Environments-with-Unknown-Rough-Zhang-Niroui/22a7179569d9a1cbc9ce5339002dc5ed451ab29c [Accessed 8th October 2020].
6. Brushlinskii N.N, Sokolov S.V. Mezhdunarodnaya pozharnaya statistika mezhdunarodnoi assotsiatsii pozharno-spasatel'nykh sluzhb. Sovremennye problemy grazhdanskoi zashchity. 2016;1(18):71-103.
7. Vasil'ev V.P., Mel'nik A.O. Reshenie mnogokriterial'nykh zadach prinyatiya resheniya posredstvom smeshannoi svertki kriteriev. Materialy XI mezhdunarodnoi nauchno-prakticheskoi konferentsii “Sovremennye innovatsionnye tekhnologii i problemy ustoichivogo razvitiya obshchestva”. Izdatel'skii dom “Kovcheg”. 2018;1:163-168.
8. Galin R.R., Meshcheryakov R.V. Human-Robot Interaction Efficiency and Human-Robot Collaboration. Studies in Systems, Decision and Control. 2020;272:55-63.
9. Meshcheryakov R.V., Trefilov P.M., Chekhov A.V., Diane S.A., Rusakov K.D., Lesiv E.A. An application of swarm of quadcopters for searching operations IFAC-PapersOnLine. Sozopol, Bulgaria: Elsevier. 2019;52(25):14-18.
10. Moiseev V.S. Gruppovoe primenenie bespilotnykh letatel'nykh apparatov: monografiya. – Kazan'. Redaktsionno-izdatel'skii tsentr «Shkola». 2017.
11. Iskhakova A.O., Iskhakov A.Yu., Meshcheryakov R.V., Zharko E.F. Method of Verification of Robotic Group Agents in the Conditions of Communication Facility Suppression IFAC-PapersOnLine. Amsterdam: Elsevier. 2019;52(13):1397-1402.
12. Kalyaev I.A., Gaiduk A.R., Kapustyan S.G. Samoorganizatsiya v mul'tiagentnykh sistemakh: Izvestiya Yuzhnogo federal'nogo universiteta. Tekhnicheskie nauki. Federal'noe gosudarstvennoe avtonomnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya "Yuzhnyi federal'nyi universitet". 2010;104(3).
13. Karimov A.Kh. Tseli i zadachi, reshaemye bespilotnymi aviatsionnymi kompleksami novogo pokoleniya. Elektronnyi zhurnal «Trudy MAI». 47. Available from:http://trudymai.ru/published.php?ID=26767 [Accessed 9th October 2020].
14. Kutakhov V.P., Plyaskota S.I. Informatsionnoe vzaimodeistvie v krupnomasshtabnykh robototekhnicheskikh aviatsionnykh sistemakh Materialy Desyatoi mezhdunarodnoi konferentsii: v 2-kh tomakh Institut problem upravleniya im. V.A.Trapeznikova. Rossiiskaya akademiya nauk. 2017;1:93-96.
15. Pantelei E. Razrabotka programmno-apparatnogo kompleksa upravleniya gruppoi bespilotnykh letatel'nykh apparatov dlya resheniya zadach predpriyatii rastenievodstva // Problemy upravleniya i modelirovaniya v slozhnykh sistemakh. Trudy XX Mezhdunarodnoi konferentsii (3-6 sentyabrya 2018 g., Samara, Rossiya). 2018;1:548–553.
16. Solov'ev V.V., Finaev V.I., Beloglazov D.A. Navigatsiya dlya obespecheniya kommunikatsii v gruppe podvizhnykh ob"ektov Telekommunikatsii. Obshchestvo s ogranichennoi otvetstvennost'yu" Nauka i tekhnologii". 2017;9:21–27.
17. Trefilov P.M., Mamchenko M.V., Romanova M.A., Ishchuk I.N. Improving Methods of Objects Detection Using Infrared Sensors Onboard the UAV. Proceedings of 15th International Conference on Electromechanics and Robotics "Zavalishin's Readings". Singapore: Springer, 2020;187:105-114. Available from: https://link.springer.com/book/10.1007%2F978-981-15-5580-0 [Accessed 10th October 2020].
Keywords: unmanned aerial vehicles, unmanned aviation systems, operation restrictions, scenarios for the use of unmanned aerial vehicles, multi-criteria optimization problem
For citation: Meshcheryakov R.V., Salomatin A.A., Senchuk D.V., Shirokov A.S. Scenario for searching, detecting and extinguishing a fire in a forest area. Modeling, Optimization and Information Technology. 2020;8(4). URL: https://moitvivt.ru/ru/journal/pdf?id=870 DOI: 10.26102/2310-6018/2020.31.4.024 (In Russ).
Published 31.12.2020