Математическая модель онкогенеза в концепции раковых стволовых клеток
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Oncogenesis mathematical model in the concept of cancer stem cells

idGoncharova A.B., idKolpak E.P., Buchina D.A. 

UDC 001.891.57
DOI: 10.26102/2310-6018/2021.32.1.009

  • Abstract
  • List of references
  • About authors

Oncological diseases are widespread at present time. Mathematical modeling for these diseases provides an answer to the question of a person's expectancy of life depending on a certain therapy. The paper provides a brief analysis of the functional load of cancer stem cells in the general system of the cancer cell population. This analysis includes consideration under conditions of an immune response and external influence (chemotherapy). The neoplasm growth modeling and the immune response to the disease, a model of the growth of a neoplasm during immune response and chemotherapy are proposed taking into account the approaches outlined in the literature. Mathematical models of neoplasms based on the positions of the clonal concept (Burnet's theory), which take into account the growth of cancer (dividing) cells, the response of the immune system, and drug therapy, these models are described by the Cauchy problem for a system of ordinary differential equations. The dynamics of tumor growth are determined based on the model. The model of disease stages is based on the distribution of the main parameters that determine the kinetics growth of the dividing cells population. An estimate is given of the average time to reach four stages of the disease and the duration of remission after the end of treatment using a statistical approach. The obtained theoretical results are compared with the data of the Russian Population Cancer Registry.

1. The state of cancer care for the population of Russia in 2019. M .: MNIOI them. P. A. Herzen branch of the Federal State Budgetary Institution "NMIRC" of the Ministry of Health of Russia, 2020. (In Russ)

2. Ashton-Key M., Campbell I. D., Rew D. A., Taylor I., Stradling R., Coddington R., Wilson G. D. The histochemical evaluation of proliferation in breast carcinomas labelled in vivo with bromodeoxyuridine. The Breast. 1993;2(1):42-47. Available at: https://www.sciencedirect.com/science/article/abs/pii/096097769390036F DOI: 10.1016/0960-9776(93)90036-F (accessed 20.10.2020).

3. Popov B. V. Polycomb family: stem cells, cancer stem cells, and prostate cancer. Tsitologiya. 2019;61(10):769–786. Available at: https://sciencejournals.ru/view-article/?j=citolog&y=2019&v=61&n=10&a=Citolog1910005Popov DOI: 10.1134/S0041377119100055 (accessed 20.10.2020)

4. Melzer С., J. von der Ohe, H. Lehnert, et al. Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells. Mol. Cancer. 2017;16(1):1–15. Available at: https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-017-0595-x DOI: 10.1186/s12943-017-0595-x (accessed 20.10.2020).

5. Brown Y., Huab S., Tanwar P.S. Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. International Journal of Biochemistry and Cell Biology. 2019;109:90-104. Available at: https://pubmed.ncbi.nlm.nih.gov/30743057/ DOI:10.1016/j.biocel.2019.02.002 (accessed 20.10.2020).

6. Tumanskyi V. O., Kovalenko I. S. Cancer stem cells and mesenchymal stem cells in pancreatic ductal adenocarcinoma. Pathologia. 2019;16:131-38. Available at: https://pubmed.ncbi.nlm.nih.gov/29948612/ DOI: 10.1007/s12253-018-0420-x (accessed 20.10.2020).

7. Alkon N. S., Ivanova A. E., Frolova E. I., Chumakov S. P Therapeutic strategies for targeting cancer stem cells. Genes and Cells. 2018;13(2):25-34.

8. Schatton T., Murphy G. F., Frank N. Y., et al Identification of cells initiating human melanomas. Nature. 2008;451(7176):345–349. Available at:https://pubmed.ncbi.nlm.nih.gov/18202660/ DOI: 10.1038/nature06489 (accessed 20.10.2020).

9. Byrne H. M., Breward C. J. W., Lewis C. E. The role of cell-cell interactions in a two-phase model for avascular tumour growth. Journal of Mathematical Biology. 2002;45(2):125-131. Available at: https://www.researchgate.net/profile/Helen-Byrne-5/publication/11204994_The_role_of_cell-cell_interaction_in_a_two-phase_model_for_avascular_tumour_growth/links/02bfe50f05f08c5591000000/The-role-of-cell-cell-interaction-in-a-two-phase-model-for-avascular-tumour-growth.pdf (accessed 20.10.2020).

10. Osojnik A., Gaffney E.A., Davies M., Yates J.W.T., Byrne H.M. Identifying and characterising the impact of excitability in a mathematical model of tumour-immune interactions. Journal of Theoretical Biology, 2020;501,110250. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0022519320301053 DOI: 10.1016/j.jtbi.2020.110250 (accessed 20.10.2020).

11. Sigal D., Przedborski M., Sivaloganathan D., Kohandel M. Mathematical Modelling of Cancer Stem Cell-Targeted Immunotherapy. Mathematical Biosciences. 2019;318,108269. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0025556419305103?via%3Dihub DOI: 10.1016/j.mbs.2019.108269 (accessed 20.10.2020).

12. Alqudah M.A., Cancer treatment by stem cells and chemotherapy as a mathematical model with numerical simulations. Alexandria Engineering Journal, 2020;59(4):1953-1957, Available at: https://www.sciencedirect.com/science/article/pii/S1110016819301668?via%3Dihub. DOI: 10.1016/j.aej.2019.12.025 (accessed 20.01.2021).

13. Solís-Pérez J.E., Gómez-Aguilar J.F., Atangana A. A fractional mathematical model of breast cancer competition model, Chaos, Solitons & Fractals, 2019;127:38-54. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0960077919302395?via%3Dihub. DOI: 10.1016/j.chaos.2019.06.027 (accessed 20.11.2020).

14. Weiss L.D., P. van den Driessche, Lowengrub J.S., Wodarz D., Komarova N.L.Effect of feedback regulation on stem cell fractions in tissues and tumors: Understanding chemoresistance in cancer. Journal of Theoretical Biology, 2021;509:110499, Available at: https://www.sciencedirect.com/science/article/abs/pii/S0022519320303544?via%3Dihub. DOI:10.1016/j.jtbi.2020.110499 (accessed 22.01.2021).

15. Kolpak E. P., Frantsuzova I. S., Evmenova E. O. Mathematical model of the blocked breast duct. Drug Invention Today. 2019;12(7):1554-1558.

16. Shchepotin I.B., Zotov A.S., Lyubota R.V., Anikusko N.F., Lyubota I.I. Clinical significance of breast cancer stem cells (literature review). Tumors of the female reproductive system. 2014;3:14-19. Available at: https://ojrs.abvpress.ru/ojrs/article/view/387 DOI: 10.17650/1994-4098-2014-0-3-14-19 (accessed 20.10.2020). (In Russ)

17. Chu E., DeVita V. T. Physicians cancer chemotherapy drug manual. Jones and Bartlett publishers. Boston, USA. 2007.

18. Golubtsova N.V., Baryshnikova M.A. Markers of tumor stem cells in ovarian cancer. Oncogynecology. 2016;4:18-25. (In Russ)

19. Pang L., Shen L., Zhao Z. Mathematical Modelling and Analysis of the Tumor Treatment Regimens with Pulsed Immunotherapy and Chemotherapy. Computational and Mathematical Methods in Medicine, 2016;6260474:12. Available at: https://www.hindawi.com/journals/cmmm/2016/6260474/. DOI: 10.1155/2016/6260474 (accessed 19.01.2021).

20. Aleksandrov A.Yu., Vorob’eva A.A., Kolpak E.P. On the diagonal stability of some classes of complex systems. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2018;14(2):72–88. Available at: https://dspace.spbu.ru/handle/11701/10439. (In Russ) DOI: 10.21638/11702/spbu10.2018.201 (accessed: 11.01.2019).

21. Goncharova A.B. Preliminary medical diagnostics based on the fuzzy sets theory using the Sugeno measure. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2019;15(4):529–543. Available at: https://dspace.spbu.ru/handle/11701/17162. (In Russ) DOI: 10.21638/11702/spbu10.2019.409 (accessed: 21.01.2020).

22. Mehrara E., Forssell-Aronsson E., Ahlman H., Bernhardt P. Specific Growth Rate versus Doubling Time for Quantitative Characterization of Tumor Growth Rate. Cancer Res. 2007;67(8):3970-3975. Available at: https://cancerres.aacrjournals.org/content/67/8/3970. DOI: 10.1158/0008-5472.CAN-06-3822 (accessed 15.01.2019).

23. Dovgalyuk A.Z. Lung cancer: a guide for doctors. SPb .: SpetsLit, 2008:207. (In Russ)

24. Pokataev I.A., Kormosh N.G., Mikhina Z.P., Laktionov K.P., Kurganova I.N., Tyulyandina A.S., Tyulyandin S.A. Modern concept of treatment of recurrent ovarian cancer. experience in surgery, drug treatment, radiation therapy. Bulletin of the Moscow Cancer Society. 2014;1:3-8. (In Russ)

25. Maslyukova E.A., Zabroda S.I., Korytova L.I, Pozharisskiy K.M., Raskin G.A., Korytov O.V. Stem tumor cells - new horizons in the prognosis of breast cancer. Tumors of the female reproductive system. 2015;3:10-14. Available at: https://ojrs.abvpress.ru/ojrs/article/view/442 DOI: 10.17650/1994-4098-2015-11-3-10-14 (accessed: 20.10.2020) (In Russ).

Goncharova Anastasia B.
PhD in Physics and Mathematics
Email: a.goncharova@spbu.ru

WoS | Scopus | ORCID | eLibrary |

St. Petersburg State University

St. Petersburg, Russian Federation

Kolpak Eugeny P.
Dr. Sci. in Physics and Mathematics, Professor
Email: e.kolpak@spbu.ru

WoS | Scopus | ORCID | eLibrary |

St. Petersburg State University

St. Petersburg, Russian Federation

Buchina Daria A.

Email: st086271@student.spbu.ru

St. Petersburg State University

St. Petersburg, Russian Federation

Keywords: mathematical modeling, steady state, sustainability, neoplasm, chemotherapy

For citation: Goncharova A.B., Kolpak E.P., Buchina D.A. Oncogenesis mathematical model in the concept of cancer stem cells. Modeling, Optimization and Information Technology. 2021;9(1). URL: https://moitvivt.ru/ru/journal/pdf?id=889 DOI: 10.26102/2310-6018/2021.32.1.009 (In Russ).

1309

Full text in PDF

Published 31.03.2021