Keywords: SARS-COV-2, software modeling of diffusion, airborne propagation, virus, convective diffusion
Software model of airborne propagation SARS-COV-2 in the air
UDC УДК 004.023: 004.519.85
DOI: 10.26102/2310-6018/2021.33.2.003
The danger of the spread of the COVID virus disease is due to propagation of the exhaled virus cloud in the natural conditions of human habitation. Modeling the spread of a viral cloud of airborne droplets makes it possible to assess the conditions for limiting its spread. Mathematical tools and software modeling tools are used to obtain a dynamic picture of the spread of the virus cloud. The results of software modeling of SARS-COV-2 virus spread in air in the form of aerosol saliva particles <5 microns formed by infected person breathing are presented. The comparative sizes of aerosol particles of the exhaled air-drop mixture and smoke particles in the air are given. A conclusion is made about the thermodynamic convection process of aerosol cloud propagation in the air. The software model is developed on the basis of the Laplace equation with zero boundary conditions and initial conditions – an instantaneous source in the center of the volume. The simulation is carried out and conclusions are drawn about the influence of temperature on the flash attenuation. Assumptions are made about the need to use an absorbing material to reduce the flash attenuation time. From theoretical and practical points of view, it is determined that the process of SARS-COV-2 propagation in the air is caused by diffusion and convection process of the air-drop mixture flow in the air. Such a flow is similar to the spread of smoke and fog in the air. The study takes into account physical phenomena such as diffusion and convection in the air.
1. Asadi S., Wexler A.S., Cappa C.D. et al. Aerosol emission and superemission during human speech increase with voice loudness. Scientific Reports. 2019;9(2348). Available at: https://doi.org/10.1038/s41598-019-38808-z. DOI: 10.1038/s41598-019-38808-z (accessed 20.01.2021)
2. Philip Anfinrud, Ph.D. Visualizing Speech-Generated Oral Fluid Droplets with Laser Light Scattering. New England Journal of Medicine. 2020;382:2061-2063. Available at: https://www.nejm.org/doi/full/10.1056/nejmc2007800. DOI: 10.1056/nejmc2007800 (accessed 20.01.2021)
3. David A. Edwards, Jonathan C. Man, Peter Brand, Jeffrey P. Katstra, K. Sommerer, Howard A. Stone, Edward Nardell, Gerhard Scheuch. Inhaling to mitigate exhaled bioaerosols. Proceedings of the National Academy of Sciences, 2004;101(50):17383-17388. Available at: https://www.pnas.org/content/101/50/17383. DOI: 10.1073/pnas.0408159101 (accessed 20.01.2021)
4. Landman W.J.M., J.H.H Van Eck. Aerosolization of Newcastle Disease Vaccine Virus and Enterococcus Faecalis. Avian Diseases. 2001:45(3):684-87. Available at: https://www.jstor.org/stable/1592912. DOI:10.2307/1592912 (accessed 20.01.2021)
5. Van Doremalen N., Bushmaker T. et al. Aerosol and surface stability of SARS-COV-2 as compared with SARS-COV-1. New England Journal of Medicine. 2020;382:1564-1567. Available at: https://www.nejm.org/doi/10.1056/NEJMc2004973. DOI: 10.1056/NEJMc2004973 (accessed 20.01.2021)
6. Ignatius T.S. Yu, M.B., B.S., M.P.H., Yuguo Li et al. Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome. New England Journal of Medicine. 2004;350:1731-1739. Available at: https://www.nejm.org/doi/full/10.1056/nejmoa032867. DOI: 10.1056/NEJMoa032867 (accessed 20.01.2021)
7. Zhang H., Li X., Ma R. et al. Airborne spread and infection of a novel swine-origin influenza A (H1N1) virus. Virology Journal. 2013;10(204). Avaliable at: https://doi.org/10.1186/1743-422X-10-204. DOI: 10.1186/1743.422X.10.204 (accessed 20.01.2021)
8. Paul Dabisch, Michael Schuit et al. The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols. Aerosol Science and Technology. 2021;55(2):142-153. Available at: https://doi.org/10.1080/02786826.2020.1829536. DOI: 10.1080/02786826.2020.1829536 (accessed 20.01.2021)
9. Monastyrckiy L.M., Bondarev R.V. To the question of the mechanism of distribution of the smell in air. Uspekhi sovremennogo estestvoznaniya. 2014;12(4):448-450. Available at: http://natural-sciences.ru/ru/article/view?id=34632. (In Russ) (accessed 20.01.2021)
10. Veretekhina S.V. A.M. Karmishin, A.D. Kozlov. Analysis of initial and boundary conditions for convective diffusion of vapors and aerosols in closed volumes. EurAsian Journal of BioSciences. 2020;14(1):995-1002. Avaliable at: http://www.ejobios.org/article/analysis-of-initial-and-boundary-conditions-for-convective-diffusion-of-vapors-and-aerosols-in-7586 (accessed 20.01.2021)
11. Maggiore Ettore, Tommasini Matteo, Ossi Paolo. Propagation in outdoor environments of aerosol droplets produced by breath and light cough. Aerosol Science and Technology. 2020;55(3):1-12. Available at: https://doi.org/10.1080/02786826.2020.1847247. DOI: 10.1080/02786826.2020.1847247 (accessed 20.01.2021)
12. Somov S.A., Ivanov A.S. Study of thermosolutal convection in moist air by holographic interferometry method. Bulletin of Perm University. Physics. 2020(2):48–56. Available at: http://press.psu.ru/index.php/phys/article/view/3233/2339. (In Russ). DOI: 10.17072/1994-3598-2020-2-48-56 (accessed 20.01.2021)
Keywords: SARS-COV-2, software modeling of diffusion, airborne propagation, virus, convective diffusion
For citation: Veretekhina S.V., Zaikovskii V.I. Software model of airborne propagation SARS-COV-2 in the air. Modeling, Optimization and Information Technology. 2021;9(2). URL: https://moitvivt.ru/ru/journal/pdf?id=891 DOI: 10.26102/2310-6018/2021.33.2.003 (In Russ).
Published 30.06.2021