Keywords: altitude control,, quadcopter, autonomous, PID controller, trajectory, stability
Altitude and trajectory control of an autonomous quadcopter
UDC УДК 681.511
DOI: 10.26102/2310-6018/2021.32.1.015
This article presents a miniature aircraft (MLA), which is autonomous in the environment. The main advances in these studies are both new trajectory tracking schemes and attitude control schemes in real flight mode. This MLA is based on a traditional quadcopter. A PID controller is used to stabilize the position of the quadcopter. The proposed regulator is designed in such a way as to be able to weaken the influence of external wind influences and to guarantee stability in this state. For autonomous trajectory tracking, you must have a fixed flight altitude. In addition, the ARM cortex M4 microcontroller performs data processing. The trajectory is determined using GPS in the mission planner software for the external environment. The HMTR module is used for real-time communication between the robot and the ground station. Flight data is saved to SD card memory and converted to MATLAB code for real-time playback. The experimental results of using the proposed regulator on an autonomous Quadcopter in real conditions show the effectiveness of our approach.
1. Atheer L.S., M. Moghavvemi Haider A. F. Mohamed., Khalaf Sallom Gaeid. Flight PID controller design for a UAV quadrotor. Scientific Research and Essays. 2010;12(4):3660-3667.
2. Tseligorova E. N. Modern information technologies and their use for research of automatic control systems. Engineering Bulletin of the don. 2010;(3). URL: ivdon.ru/magazine/archive/n3y2010/222.
3. Pavlovsky V. E., Yatsun S. F., Yemelyanova O. V., Savitsky A.V. Robotics and technical Cybernetics. 2014;4(5):49-57.
4. Gen K., Chulin N.A., Nauka i obrazovanie. Science and Education. 2015.
5. Guryanov A. E. Modeling of quadrocopter control. Engineering Bulletin. 2014;(8). URL: engbul.bmstu.ru/doc/723331.html.
6. D. Saifeddin., A. G. Bulgakov., T. N. Kruglova. Inzhenernyj vestnik Dona. 2014;(1). URL: ivdon.ru/ru/magazine/archive/n1y2014/2293
7. Abdulkader Joukhadar., Mohammad Alchehabi., Adnan Jejeh. Advanced UAVs Nonlinear Control Systems and Applications.2019;(4). DOI: 10.5772/intechopen.86353
8. Diao., C., Xian., B., Yin., Q., Zeng., W., Li., h., Yang., Y. A nonlinear adaptive control approach for Quadrotor UAVs. 8th Asian Control Conference (ASCC). 2011;223-228, Taiwan.
9. Htet Soe Paing. New Designing Approaches for Quadcopter Using 2D Model Modelling a Cascaded PID Controller. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). 2020;2370-2373.
10. P. Pounds., R. Mahony., P. Corke. Simulation and control of a large square robot. Engineering Management Practice. 2010;18(7):691-699.
11. S. Verling., B. Weibel., M. Boosfeld., K. Alexis., M. Burri., R. Siegwart. “Full attitude control of a VTOL tailsitter UAV,” in Proc. IEEE International Conference on Robotics and Automation (ICRA).2016;(5):3006–3012.
12. Zarafshan. P., Moosavian S., Ali A., Bahrami. M. Comparative Controller Design of an Aerial Robot. Aerospace Science and Technology Journal. 2010;14(4):276-282.
Keywords: altitude control,, quadcopter, autonomous, PID controller, trajectory, stability
For citation: Htet S.P., Han M.H., Kyaw S.W., Zaw M.N. Altitude and trajectory control of an autonomous quadcopter. Modeling, Optimization and Information Technology. 2021;9(1). URL: https://moitvivt.ru/ru/journal/pdf?id=933 DOI: 10.26102/2310-6018/2021.32.1.015 (In Russ).
Published 31.03.2021